Maximally stable extremal region extractor.
More...
#include "features2d.hpp"
|
virtual void | detectRegions (InputArray image, std::vector< std::vector< Point > > &msers, std::vector< Rect > &bboxes)=0 |
| Detect MSER regions. More...
|
|
virtual String | getDefaultName () const CV_OVERRIDE |
|
virtual int | getDelta () const =0 |
|
virtual int | getMaxArea () const =0 |
|
virtual int | getMinArea () const =0 |
|
virtual bool | getPass2Only () const =0 |
|
virtual void | setDelta (int delta)=0 |
|
virtual void | setMaxArea (int maxArea)=0 |
|
virtual void | setMinArea (int minArea)=0 |
|
virtual void | setPass2Only (bool f)=0 |
|
virtual | ~Feature2D () |
|
virtual void | compute (InputArray image, std::vector< KeyPoint > &keypoints, OutputArray descriptors) |
| Computes the descriptors for a set of keypoints detected in an image (first variant) or image set (second variant). More...
|
|
virtual void | compute (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, OutputArrayOfArrays descriptors) |
|
virtual int | defaultNorm () const |
|
virtual int | descriptorSize () const |
|
virtual int | descriptorType () const |
|
virtual void | detect (InputArray image, std::vector< KeyPoint > &keypoints, InputArray mask=noArray()) |
| Detects keypoints in an image (first variant) or image set (second variant). More...
|
|
virtual void | detect (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, InputArrayOfArrays masks=noArray()) |
|
virtual void | detectAndCompute (InputArray image, InputArray mask, std::vector< KeyPoint > &keypoints, OutputArray descriptors, bool useProvidedKeypoints=false) |
|
virtual bool | empty () const CV_OVERRIDE |
| Return true if detector object is empty. More...
|
|
void | read (const String &fileName) |
|
virtual void | read (const FileNode &) CV_OVERRIDE |
| Reads algorithm parameters from a file storage. More...
|
|
void | write (const String &fileName) const |
|
virtual void | write (FileStorage &) const CV_OVERRIDE |
| Stores algorithm parameters in a file storage. More...
|
|
void | write (const Ptr< FileStorage > &fs, const String &name=String()) const |
|
| Algorithm () |
|
virtual | ~Algorithm () |
|
virtual void | clear () |
| Clears the algorithm state. More...
|
|
virtual void | save (const String &filename) const |
|
void | write (const Ptr< FileStorage > &fs, const String &name=String()) const |
| simplified API for language bindings This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts. More...
|
|
|
static Ptr< MSER > | create (int _delta=5, int _min_area=60, int _max_area=14400, double _max_variation=0.25, double _min_diversity=.2, int _max_evolution=200, double _area_threshold=1.01, double _min_margin=0.003, int _edge_blur_size=5) |
| Full consturctor for MSER detector. More...
|
|
template<typename _Tp > |
static Ptr< _Tp > | load (const String &filename, const String &objname=String()) |
| Loads algorithm from the file. More...
|
|
template<typename _Tp > |
static Ptr< _Tp > | loadFromString (const String &strModel, const String &objname=String()) |
| Loads algorithm from a String. More...
|
|
template<typename _Tp > |
static Ptr< _Tp > | read (const FileNode &fn) |
| Reads algorithm from the file node. More...
|
|
Maximally stable extremal region extractor.
The class encapsulates all the parameters of the MSER extraction algorithm (see wiki article).
- there are two different implementation of MSER: one for grey image, one for color image
- the grey image algorithm is taken from: [150] ; the paper claims to be faster than union-find method; it actually get 1.5~2m/s on my centrino L7200 1.2GHz laptop.
- the color image algorithm is taken from: [66] ; it should be much slower than grey image method ( 3~4 times ); the chi_table.h file is taken directly from paper's source code which is distributed under GPL.
- (Python) A complete example showing the use of the MSER detector can be found at samples/python/mser.py
§ create()
static Ptr<MSER> cv::MSER::create |
( |
int |
_delta = 5 , |
|
|
int |
_min_area = 60 , |
|
|
int |
_max_area = 14400 , |
|
|
double |
_max_variation = 0.25 , |
|
|
double |
_min_diversity = .2 , |
|
|
int |
_max_evolution = 200 , |
|
|
double |
_area_threshold = 1.01 , |
|
|
double |
_min_margin = 0.003 , |
|
|
int |
_edge_blur_size = 5 |
|
) |
| |
|
static |
Python: |
---|
| retval | = | cv.MSER_create( | [, _delta[, _min_area[, _max_area[, _max_variation[, _min_diversity[, _max_evolution[, _area_threshold[, _min_margin[, _edge_blur_size]]]]]]]]] | ) |
Full consturctor for MSER detector.
- Parameters
-
_delta | it compares \((size_{i}-size_{i-delta})/size_{i-delta}\) |
_min_area | prune the area which smaller than minArea |
_max_area | prune the area which bigger than maxArea |
_max_variation | prune the area have similar size to its children |
_min_diversity | for color image, trace back to cut off mser with diversity less than min_diversity |
_max_evolution | for color image, the evolution steps |
_area_threshold | for color image, the area threshold to cause re-initialize |
_min_margin | for color image, ignore too small margin |
_edge_blur_size | for color image, the aperture size for edge blur |
§ detectRegions()
virtual void cv::MSER::detectRegions |
( |
InputArray |
image, |
|
|
std::vector< std::vector< Point > > & |
msers, |
|
|
std::vector< Rect > & |
bboxes |
|
) |
| |
|
pure virtual |
Python: |
---|
| msers, bboxes | = | cv.MSER.detectRegions( | image | ) |
Detect MSER regions.
- Parameters
-
image | input image (8UC1, 8UC3 or 8UC4, must be greater or equal than 3x3) |
msers | resulting list of point sets |
bboxes | resulting bounding boxes |
§ getDefaultName()
virtual String cv::MSER::getDefaultName |
( |
| ) |
const |
|
virtual |
Python: |
---|
| retval | = | cv.MSER.getDefaultName( | | ) |
Returns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string.
Reimplemented from cv::Feature2D.
§ getDelta()
virtual int cv::MSER::getDelta |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| retval | = | cv.MSER.getDelta( | | ) |
§ getMaxArea()
virtual int cv::MSER::getMaxArea |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| retval | = | cv.MSER.getMaxArea( | | ) |
§ getMinArea()
virtual int cv::MSER::getMinArea |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| retval | = | cv.MSER.getMinArea( | | ) |
§ getPass2Only()
virtual bool cv::MSER::getPass2Only |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| retval | = | cv.MSER.getPass2Only( | | ) |
§ setDelta()
virtual void cv::MSER::setDelta |
( |
int |
delta | ) |
|
|
pure virtual |
Python: |
---|
| None | = | cv.MSER.setDelta( | delta | ) |
§ setMaxArea()
virtual void cv::MSER::setMaxArea |
( |
int |
maxArea | ) |
|
|
pure virtual |
Python: |
---|
| None | = | cv.MSER.setMaxArea( | maxArea | ) |
§ setMinArea()
virtual void cv::MSER::setMinArea |
( |
int |
minArea | ) |
|
|
pure virtual |
Python: |
---|
| None | = | cv.MSER.setMinArea( | minArea | ) |
§ setPass2Only()
virtual void cv::MSER::setPass2Only |
( |
bool |
f | ) |
|
|
pure virtual |
Python: |
---|
| None | = | cv.MSER.setPass2Only( | f | ) |
The documentation for this class was generated from the following file: