|
void | cv::ft::FT12D_components (InputArray matrix, InputArray kernel, OutputArray components) |
| Computes components of the array using direct \(F^1\)-transform. More...
|
|
void | cv::ft::FT12D_createPolynomMatrixHorizontal (int radius, OutputArray matrix, const int chn) |
| Creates horizontal matrix for \(F^1\)-transform computation. More...
|
|
void | cv::ft::FT12D_createPolynomMatrixVertical (int radius, OutputArray matrix, const int chn) |
| Creates vertical matrix for \(F^1\)-transform computation. More...
|
|
void | cv::ft::FT12D_inverseFT (InputArray components, InputArray kernel, OutputArray output, int width, int height) |
| Computes inverse \(F^1\)-transfrom. More...
|
|
void | cv::ft::FT12D_polynomial (InputArray matrix, InputArray kernel, OutputArray c00, OutputArray c10, OutputArray c01, OutputArray components, InputArray mask=noArray()) |
| Computes elements of \(F^1\)-transform components. More...
|
|
void | cv::ft::FT12D_process (InputArray matrix, InputArray kernel, OutputArray output, InputArray mask=noArray()) |
| Computes \(F^1\)-transfrom and inverse \(F^1\)-transfrom at once. More...
|
|
Fuzzy transform ( \(F^1\)-transform) of the 1th degree transforms whole image to a matrix of its components. Each component is polynomial of the 1th degree carrying information about average color and average gradient of certain subarea.
§ FT12D_components()
Python: |
---|
| components | = | cv.ft.FT12D_components( | matrix, kernel[, components] | ) |
Computes components of the array using direct \(F^1\)-transform.
- Parameters
-
matrix | Input array. |
kernel | Kernel used for processing. Function ft::createKernel can be used. |
components | Output 32-bit float array for the components. |
The function computes linear components using predefined kernel.
§ FT12D_createPolynomMatrixHorizontal()
void cv::ft::FT12D_createPolynomMatrixHorizontal |
( |
int |
radius, |
|
|
OutputArray |
matrix, |
|
|
const int |
chn |
|
) |
| |
Python: |
---|
| matrix | = | cv.ft.FT12D_createPolynomMatrixHorizontal( | radius, chn[, matrix] | ) |
Creates horizontal matrix for \(F^1\)-transform computation.
- Parameters
-
radius | Radius of the basic function. |
matrix | The horizontal matrix. |
chn | Number of channels. |
The function creates helper horizontal matrix for \(F^1\)-transfrom processing. It is used for gradient computation.
§ FT12D_createPolynomMatrixVertical()
void cv::ft::FT12D_createPolynomMatrixVertical |
( |
int |
radius, |
|
|
OutputArray |
matrix, |
|
|
const int |
chn |
|
) |
| |
Python: |
---|
| matrix | = | cv.ft.FT12D_createPolynomMatrixVertical( | radius, chn[, matrix] | ) |
Creates vertical matrix for \(F^1\)-transform computation.
- Parameters
-
radius | Radius of the basic function. |
matrix | The vertical matrix. |
chn | Number of channels. |
The function creates helper vertical matrix for \(F^1\)-transfrom processing. It is used for gradient computation.
§ FT12D_inverseFT()
Python: |
---|
| output | = | cv.ft.FT12D_inverseFT( | components, kernel, width, height[, output] | ) |
Computes inverse \(F^1\)-transfrom.
- Parameters
-
components | Input 32-bit float single channel array for the components. |
kernel | Kernel used for processing. The same kernel as for components computation must be used. |
output | Output 32-bit float array. |
width | Width of the output array. |
height | Height of the output array. |
Computation of inverse \(F^1\)-transform.
§ FT12D_polynomial()
Python: |
---|
| c00, c10, c01, components | = | cv.ft.FT12D_polynomial( | matrix, kernel[, c00[, c10[, c01[, components[, mask]]]]] | ) |
Computes elements of \(F^1\)-transform components.
- Parameters
-
matrix | Input array. |
kernel | Kernel used for processing. Function ft::createKernel can be used. |
c00 | Elements represent average color. |
c10 | Elements represent average vertical gradient. |
c01 | Elements represent average horizontal gradient. |
components | Output 32-bit float array for the components. |
mask | Mask can be used for unwanted area marking. |
The function computes components and its elements using predefined kernel and mask.
§ FT12D_process()
Python: |
---|
| output | = | cv.ft.FT12D_process( | matrix, kernel[, output[, mask]] | ) |
Computes \(F^1\)-transfrom and inverse \(F^1\)-transfrom at once.
- Parameters
-
matrix | Input matrix. |
kernel | Kernel used for processing. Function ft::createKernel can be used. |
output | Output 32-bit float array. |
mask | Mask used for unwanted area marking. |
This function computes \(F^1\)-transfrom and inverse \(F^1\)-transfotm in one step. It is fully sufficient and optimized for cv::Mat
.
- Note
- F-transform technique of first degreee is described in paper [208].