Kalman filter class.  
 More...
#include "tracking.hpp"
Kalman filter class. 
The class implements a standard Kalman filter http://en.wikipedia.org/wiki/Kalman_filter, [214] . However, you can modify transitionMatrix, controlMatrix, and measurementMatrix to get an extended Kalman filter functionality. 
- Note
- In C API when CvKalman* kalmanFilter structure is not needed anymore, it should be released with cvReleaseKalman(&kalmanFilter) 
- Examples: 
- samples/cpp/kalman.cpp.
§ KalmanFilter() [1/2]
      
        
          | cv::KalmanFilter::KalmanFilter | ( |  | ) |  | 
      
| Python: | 
|---|
|  | <KalmanFilter object> | = | cv.KalmanFilter( |  | ) | 
|  | <KalmanFilter object> | = | cv.KalmanFilter( | dynamParams, measureParams[, controlParams[, type]] | ) | 
 
 
§ KalmanFilter() [2/2]
      
        
          | cv::KalmanFilter::KalmanFilter | ( | int | dynamParams, | 
        
          |  |  | int | measureParams, | 
        
          |  |  | int | controlParams = 0, | 
        
          |  |  | int | type = CV_32F | 
        
          |  | ) |  |  | 
      
| Python: | 
|---|
|  | <KalmanFilter object> | = | cv.KalmanFilter( |  | ) | 
|  | <KalmanFilter object> | = | cv.KalmanFilter( | dynamParams, measureParams[, controlParams[, type]] | ) | 
 
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts. 
- Parameters
- 
  
    | dynamParams | Dimensionality of the state. |  | measureParams | Dimensionality of the measurement. |  | controlParams | Dimensionality of the control vector. |  | type | Type of the created matrices that should be CV_32F or CV_64F. |  
 
 
 
§ correct()
      
        
          | const Mat& cv::KalmanFilter::correct | ( | const Mat & | measurement | ) |  | 
      
| Python: | 
|---|
|  | retval | = | cv.KalmanFilter.correct( | measurement | ) | 
 
Updates the predicted state from the measurement. 
- Parameters
- 
  
    | measurement | The measured system parameters |  
 
- Examples: 
- samples/cpp/kalman.cpp.
 
 
§ init()
      
        
          | void cv::KalmanFilter::init | ( | int | dynamParams, | 
        
          |  |  | int | measureParams, | 
        
          |  |  | int | controlParams = 0, | 
        
          |  |  | int | type = CV_32F | 
        
          |  | ) |  |  | 
      
 
Re-initializes Kalman filter. The previous content is destroyed. 
- Parameters
- 
  
    | dynamParams | Dimensionality of the state. |  | measureParams | Dimensionality of the measurement. |  | controlParams | Dimensionality of the control vector. |  | type | Type of the created matrices that should be CV_32F or CV_64F. |  
 
 
 
§ predict()
      
        
          | const Mat& cv::KalmanFilter::predict | ( | const Mat & | control = Mat() | ) |  | 
      
| Python: | 
|---|
|  | retval | = | cv.KalmanFilter.predict( | [, control] | ) | 
 
 
§ controlMatrix
      
        
          | Mat cv::KalmanFilter::controlMatrix | 
      
 
control matrix (B) (not used if there is no control) 
 
 
§ errorCovPost
      
        
          | Mat cv::KalmanFilter::errorCovPost | 
      
 
 
§ errorCovPre
      
        
          | Mat cv::KalmanFilter::errorCovPre | 
      
 
priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/ 
 
 
§ gain
      
        
          | Mat cv::KalmanFilter::gain | 
      
 
Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R) 
 
 
§ measurementMatrix
      
        
          | Mat cv::KalmanFilter::measurementMatrix | 
      
 
 
§ measurementNoiseCov
      
        
          | Mat cv::KalmanFilter::measurementNoiseCov | 
      
 
 
§ processNoiseCov
      
        
          | Mat cv::KalmanFilter::processNoiseCov | 
      
 
 
§ statePost
      
        
          | Mat cv::KalmanFilter::statePost | 
      
 
 
§ statePre
      
        
          | Mat cv::KalmanFilter::statePre | 
      
 
predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k) 
 
 
§ temp1
      
        
          | Mat cv::KalmanFilter::temp1 | 
      
 
 
§ temp2
      
        
          | Mat cv::KalmanFilter::temp2 | 
      
 
 
§ temp3
      
        
          | Mat cv::KalmanFilter::temp3 | 
      
 
 
§ temp4
      
        
          | Mat cv::KalmanFilter::temp4 | 
      
 
 
§ temp5
      
        
          | Mat cv::KalmanFilter::temp5 | 
      
 
 
§ transitionMatrix
      
        
          | Mat cv::KalmanFilter::transitionMatrix | 
      
 
 
The documentation for this class was generated from the following file: