Package org.opencv.ximgproc
Class EdgeAwareInterpolator
- java.lang.Object
-
- org.opencv.core.Algorithm
-
- org.opencv.ximgproc.SparseMatchInterpolator
-
- org.opencv.ximgproc.EdgeAwareInterpolator
-
public class EdgeAwareInterpolator extends SparseMatchInterpolator
Sparse match interpolation algorithm based on modified locally-weighted affine estimator from CITE: Revaud2015 and Fast Global Smoother as post-processing filter.
-
-
Constructor Summary
Constructors Modifier Constructor Description protected
EdgeAwareInterpolator(long addr)
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description static EdgeAwareInterpolator
__fromPtr__(long addr)
protected void
finalize()
float
getFGSLambda()
SEE: setFGSLambdafloat
getFGSSigma()
SEE: setFGSLambdaint
getK()
SEE: setKfloat
getLambda()
SEE: setLambdafloat
getSigma()
SEE: setSigmaboolean
getUsePostProcessing()
SEE: setUsePostProcessingvoid
setFGSLambda(float _lambda)
Sets the respective fastGlobalSmootherFilter() parameter.void
setFGSSigma(float _sigma)
SEE: setFGSLambdavoid
setK(int _k)
K is a number of nearest-neighbor matches considered, when fitting a locally affine model.void
setLambda(float _lambda)
Lambda is a parameter defining the weight of the edge-aware term in geodesic distance, should be in the range of 0 to 1000.void
setSigma(float _sigma)
Sigma is a parameter defining how fast the weights decrease in the locally-weighted affine fitting.void
setUsePostProcessing(boolean _use_post_proc)
Sets whether the fastGlobalSmootherFilter() post-processing is employed.-
Methods inherited from class org.opencv.ximgproc.SparseMatchInterpolator
interpolate
-
Methods inherited from class org.opencv.core.Algorithm
clear, empty, getDefaultName, getNativeObjAddr, save
-
-
-
-
Method Detail
-
__fromPtr__
public static EdgeAwareInterpolator __fromPtr__(long addr)
-
setK
public void setK(int _k)
K is a number of nearest-neighbor matches considered, when fitting a locally affine model. Usually it should be around 128. However, lower values would make the interpolation noticeably faster.- Parameters:
_k
- automatically generated
-
getK
public int getK()
SEE: setK- Returns:
- automatically generated
-
setSigma
public void setSigma(float _sigma)
Sigma is a parameter defining how fast the weights decrease in the locally-weighted affine fitting. Higher values can help preserve fine details, lower values can help to get rid of noise in the output flow.- Parameters:
_sigma
- automatically generated
-
getSigma
public float getSigma()
SEE: setSigma- Returns:
- automatically generated
-
setLambda
public void setLambda(float _lambda)
Lambda is a parameter defining the weight of the edge-aware term in geodesic distance, should be in the range of 0 to 1000.- Parameters:
_lambda
- automatically generated
-
getLambda
public float getLambda()
SEE: setLambda- Returns:
- automatically generated
-
setUsePostProcessing
public void setUsePostProcessing(boolean _use_post_proc)
Sets whether the fastGlobalSmootherFilter() post-processing is employed. It is turned on by default.- Parameters:
_use_post_proc
- automatically generated
-
getUsePostProcessing
public boolean getUsePostProcessing()
SEE: setUsePostProcessing- Returns:
- automatically generated
-
setFGSLambda
public void setFGSLambda(float _lambda)
Sets the respective fastGlobalSmootherFilter() parameter.- Parameters:
_lambda
- automatically generated
-
getFGSLambda
public float getFGSLambda()
SEE: setFGSLambda- Returns:
- automatically generated
-
setFGSSigma
public void setFGSSigma(float _sigma)
SEE: setFGSLambda- Parameters:
_sigma
- automatically generated
-
getFGSSigma
public float getFGSSigma()
SEE: setFGSLambda- Returns:
- automatically generated
-
finalize
protected void finalize() throws java.lang.Throwable
- Overrides:
finalize
in classSparseMatchInterpolator
- Throws:
java.lang.Throwable
-
-