OCRHMMDecoder class provides an interface for OCR using Hidden Markov Models.
More...
#include <opencv2/text/ocr.hpp>
|
virtual void | run (Mat &image, std::string &output_text, std::vector< Rect > *component_rects=NULL, std::vector< std::string > *component_texts=NULL, std::vector< float > *component_confidences=NULL, int component_level=0) CV_OVERRIDE |
| Recognize text using HMM. More...
|
|
virtual void | run (Mat &image, Mat &mask, std::string &output_text, std::vector< Rect > *component_rects=NULL, std::vector< std::string > *component_texts=NULL, std::vector< float > *component_confidences=NULL, int component_level=0) CV_OVERRIDE |
| Recognize text using HMM. More...
|
|
String | run (InputArray image, int min_confidence, int component_level=0) |
|
String | run (InputArray image, InputArray mask, int min_confidence, int component_level=0) |
|
virtual | ~BaseOCR () |
|
|
static Ptr< OCRHMMDecoder > | create (const Ptr< OCRHMMDecoder::ClassifierCallback > classifier, const std::string &vocabulary, InputArray transition_probabilities_table, InputArray emission_probabilities_table, decoder_mode mode=OCR_DECODER_VITERBI) |
| Creates an instance of the OCRHMMDecoder class. Initializes HMMDecoder. More...
|
|
static Ptr< OCRHMMDecoder > | create (const Ptr< OCRHMMDecoder::ClassifierCallback > classifier, const String &vocabulary, InputArray transition_probabilities_table, InputArray emission_probabilities_table, int mode=OCR_DECODER_VITERBI) |
|
static Ptr< OCRHMMDecoder > | create (const String &filename, const String &vocabulary, InputArray transition_probabilities_table, InputArray emission_probabilities_table, int mode=OCR_DECODER_VITERBI, int classifier=OCR_KNN_CLASSIFIER) |
| Creates an instance of the OCRHMMDecoder class. Loads and initializes HMMDecoder from the specified path. More...
|
|
OCRHMMDecoder class provides an interface for OCR using Hidden Markov Models.
- Note
-
◆ create() [1/3]
Python: |
---|
| cv.text.OCRHMMDecoder.create( | classifier, vocabulary, transition_probabilities_table, emission_probabilities_table[, mode] | ) -> | retval |
| cv.text.OCRHMMDecoder.create( | filename, vocabulary, transition_probabilities_table, emission_probabilities_table[, mode[, classifier]] | ) -> | retval |
| cv.text.OCRHMMDecoder_create( | classifier, vocabulary, transition_probabilities_table, emission_probabilities_table[, mode] | ) -> | retval |
| cv.text.OCRHMMDecoder_create( | filename, vocabulary, transition_probabilities_table, emission_probabilities_table[, mode[, classifier]] | ) -> | retval |
Creates an instance of the OCRHMMDecoder class. Initializes HMMDecoder.
- Parameters
-
classifier | The character classifier with built in feature extractor. |
vocabulary | The language vocabulary (chars when ascii english text). vocabulary.size() must be equal to the number of classes of the classifier. |
transition_probabilities_table | Table with transition probabilities between character pairs. cols == rows == vocabulary.size(). |
emission_probabilities_table | Table with observation emission probabilities. cols == rows == vocabulary.size(). |
mode | HMM Decoding algorithm. Only OCR_DECODER_VITERBI is available for the moment (http://en.wikipedia.org/wiki/Viterbi_algorithm). |
◆ create() [2/3]
Python: |
---|
| cv.text.OCRHMMDecoder.create( | classifier, vocabulary, transition_probabilities_table, emission_probabilities_table[, mode] | ) -> | retval |
| cv.text.OCRHMMDecoder.create( | filename, vocabulary, transition_probabilities_table, emission_probabilities_table[, mode[, classifier]] | ) -> | retval |
| cv.text.OCRHMMDecoder_create( | classifier, vocabulary, transition_probabilities_table, emission_probabilities_table[, mode] | ) -> | retval |
| cv.text.OCRHMMDecoder_create( | filename, vocabulary, transition_probabilities_table, emission_probabilities_table[, mode[, classifier]] | ) -> | retval |
◆ create() [3/3]
Python: |
---|
| cv.text.OCRHMMDecoder.create( | classifier, vocabulary, transition_probabilities_table, emission_probabilities_table[, mode] | ) -> | retval |
| cv.text.OCRHMMDecoder.create( | filename, vocabulary, transition_probabilities_table, emission_probabilities_table[, mode[, classifier]] | ) -> | retval |
| cv.text.OCRHMMDecoder_create( | classifier, vocabulary, transition_probabilities_table, emission_probabilities_table[, mode] | ) -> | retval |
| cv.text.OCRHMMDecoder_create( | filename, vocabulary, transition_probabilities_table, emission_probabilities_table[, mode[, classifier]] | ) -> | retval |
Creates an instance of the OCRHMMDecoder class. Loads and initializes HMMDecoder from the specified path.
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
◆ run() [1/4]
virtual void cv::text::OCRHMMDecoder::run |
( |
Mat & |
image, |
|
|
std::string & |
output_text, |
|
|
std::vector< Rect > * |
component_rects = NULL , |
|
|
std::vector< std::string > * |
component_texts = NULL , |
|
|
std::vector< float > * |
component_confidences = NULL , |
|
|
int |
component_level = 0 |
|
) |
| |
|
virtual |
Python: |
---|
| cv.text.OCRHMMDecoder.run( | image, min_confidence[, component_level] | ) -> | retval |
| cv.text.OCRHMMDecoder.run( | image, mask, min_confidence[, component_level] | ) -> | retval |
Recognize text using HMM.
Takes binary image on input and returns recognized text in the output_text parameter. Optionally provides also the Rects for individual text elements found (e.g. words), and the list of those text elements with their confidence values.
- Parameters
-
image | Input binary image CV_8UC1 with a single text line (or word). |
output_text | Output text. Most likely character sequence found by the HMM decoder. |
component_rects | If provided the method will output a list of Rects for the individual text elements found (e.g. words). |
component_texts | If provided the method will output a list of text strings for the recognition of individual text elements found (e.g. words). |
component_confidences | If provided the method will output a list of confidence values for the recognition of individual text elements found (e.g. words). |
component_level | Only OCR_LEVEL_WORD is supported. |
Implements cv::text::BaseOCR.
◆ run() [2/4]
virtual void cv::text::OCRHMMDecoder::run |
( |
Mat & |
image, |
|
|
Mat & |
mask, |
|
|
std::string & |
output_text, |
|
|
std::vector< Rect > * |
component_rects = NULL , |
|
|
std::vector< std::string > * |
component_texts = NULL , |
|
|
std::vector< float > * |
component_confidences = NULL , |
|
|
int |
component_level = 0 |
|
) |
| |
|
virtual |
Python: |
---|
| cv.text.OCRHMMDecoder.run( | image, min_confidence[, component_level] | ) -> | retval |
| cv.text.OCRHMMDecoder.run( | image, mask, min_confidence[, component_level] | ) -> | retval |
Recognize text using HMM.
Takes an image and a mask (where each connected component corresponds to a segmented character) on input and returns recognized text in the output_text parameter. Optionally provides also the Rects for individual text elements found (e.g. words), and the list of those text elements with their confidence values.
- Parameters
-
image | Input image CV_8UC1 or CV_8UC3 with a single text line (or word). |
mask | Input binary image CV_8UC1 same size as input image. Each connected component in mask corresponds to a segmented character in the input image. |
output_text | Output text. Most likely character sequence found by the HMM decoder. |
component_rects | If provided the method will output a list of Rects for the individual text elements found (e.g. words). |
component_texts | If provided the method will output a list of text strings for the recognition of individual text elements found (e.g. words). |
component_confidences | If provided the method will output a list of confidence values for the recognition of individual text elements found (e.g. words). |
component_level | Only OCR_LEVEL_WORD is supported. |
Implements cv::text::BaseOCR.
◆ run() [3/4]
String cv::text::OCRHMMDecoder::run |
( |
InputArray |
image, |
|
|
int |
min_confidence, |
|
|
int |
component_level = 0 |
|
) |
| |
Python: |
---|
| cv.text.OCRHMMDecoder.run( | image, min_confidence[, component_level] | ) -> | retval |
| cv.text.OCRHMMDecoder.run( | image, mask, min_confidence[, component_level] | ) -> | retval |
◆ run() [4/4]
Python: |
---|
| cv.text.OCRHMMDecoder.run( | image, min_confidence[, component_level] | ) -> | retval |
| cv.text.OCRHMMDecoder.run( | image, mask, min_confidence[, component_level] | ) -> | retval |
◆ classifier
◆ emission_p
Mat cv::text::OCRHMMDecoder::emission_p |
|
protected |
◆ mode
◆ transition_p
Mat cv::text::OCRHMMDecoder::transition_p |
|
protected |
◆ vocabulary
std::string cv::text::OCRHMMDecoder::vocabulary |
|
protected |
The documentation for this class was generated from the following file: