|  | OpenCV
    3.4.6
    Open Source Computer Vision | 
| Modules | |
| Color space processing | |
| Histogram Calculation | |
| Hough Transform | |
| Feature Detection | |
| Classes | |
| class | cv::cuda::CannyEdgeDetector | 
| Base class for Canny Edge Detector. :  More... | |
| class | cv::cuda::TemplateMatching | 
| Base class for Template Matching. :  More... | |
| Functions | |
| void | cv::cuda::bilateralFilter (InputArray src, OutputArray dst, int kernel_size, float sigma_color, float sigma_spatial, int borderMode=BORDER_DEFAULT, Stream &stream=Stream::Null()) | 
| Performs bilateral filtering of passed image.  More... | |
| void | cv::cuda::blendLinear (InputArray img1, InputArray img2, InputArray weights1, InputArray weights2, OutputArray result, Stream &stream=Stream::Null()) | 
| Performs linear blending of two images.  More... | |
| Ptr< CannyEdgeDetector > | cv::cuda::createCannyEdgeDetector (double low_thresh, double high_thresh, int apperture_size=3, bool L2gradient=false) | 
| Creates implementation for cuda::CannyEdgeDetector .  More... | |
| Ptr< TemplateMatching > | cv::cuda::createTemplateMatching (int srcType, int method, Size user_block_size=Size()) | 
| Creates implementation for cuda::TemplateMatching .  More... | |
| void | cv::cuda::meanShiftFiltering (InputArray src, OutputArray dst, int sp, int sr, TermCriteria criteria=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 5, 1), Stream &stream=Stream::Null()) | 
| Performs mean-shift filtering for each point of the source image.  More... | |
| void | cv::cuda::meanShiftProc (InputArray src, OutputArray dstr, OutputArray dstsp, int sp, int sr, TermCriteria criteria=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 5, 1), Stream &stream=Stream::Null()) | 
| Performs a mean-shift procedure and stores information about processed points (their colors and positions) in two images.  More... | |
| void | cv::cuda::meanShiftSegmentation (InputArray src, OutputArray dst, int sp, int sr, int minsize, TermCriteria criteria=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 5, 1), Stream &stream=Stream::Null()) | 
| Performs a mean-shift segmentation of the source image and eliminates small segments.  More... | |
| void cv::cuda::bilateralFilter | ( | InputArray | src, | 
| OutputArray | dst, | ||
| int | kernel_size, | ||
| float | sigma_color, | ||
| float | sigma_spatial, | ||
| int | borderMode = BORDER_DEFAULT, | ||
| Stream & | stream = Stream::Null() | ||
| ) | 
#include <opencv2/cudaimgproc.hpp>
Performs bilateral filtering of passed image.
| src | Source image. Supports only (channels != 2 && depth() != CV_8S && depth() != CV_32S && depth() != CV_64F). | 
| dst | Destination imagwe. | 
| kernel_size | Kernel window size. | 
| sigma_color | Filter sigma in the color space. | 
| sigma_spatial | Filter sigma in the coordinate space. | 
| borderMode | Border type. See borderInterpolate for details. BORDER_REFLECT101 , BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now. | 
| stream | Stream for the asynchronous version. | 
| void cv::cuda::blendLinear | ( | InputArray | img1, | 
| InputArray | img2, | ||
| InputArray | weights1, | ||
| InputArray | weights2, | ||
| OutputArray | result, | ||
| Stream & | stream = Stream::Null() | ||
| ) | 
#include <opencv2/cudaimgproc.hpp>
Performs linear blending of two images.
| img1 | First image. Supports only CV_8U and CV_32F depth. | 
| img2 | Second image. Must have the same size and the same type as img1 . | 
| weights1 | Weights for first image. Must have tha same size as img1 . Supports only CV_32F type. | 
| weights2 | Weights for second image. Must have tha same size as img2 . Supports only CV_32F type. | 
| result | Destination image. | 
| stream | Stream for the asynchronous version. | 
| Ptr<CannyEdgeDetector> cv::cuda::createCannyEdgeDetector | ( | double | low_thresh, | 
| double | high_thresh, | ||
| int | apperture_size = 3, | ||
| bool | L2gradient = false | ||
| ) | 
#include <opencv2/cudaimgproc.hpp>
Creates implementation for cuda::CannyEdgeDetector .
| low_thresh | First threshold for the hysteresis procedure. | 
| high_thresh | Second threshold for the hysteresis procedure. | 
| apperture_size | Aperture size for the Sobel operator. | 
| L2gradient | Flag indicating whether a more accurate \(L_2\) norm \(=\sqrt{(dI/dx)^2 + (dI/dy)^2}\) should be used to compute the image gradient magnitude ( L2gradient=true ), or a faster default \(L_1\) norm \(=|dI/dx|+|dI/dy|\) is enough ( L2gradient=false ). | 
| Ptr<TemplateMatching> cv::cuda::createTemplateMatching | ( | int | srcType, | 
| int | method, | ||
| Size | user_block_size = Size() | ||
| ) | 
#include <opencv2/cudaimgproc.hpp>
Creates implementation for cuda::TemplateMatching .
| srcType | Input source type. CV_32F and CV_8U depth images (1..4 channels) are supported for now. | 
| method | Specifies the way to compare the template with the image. | 
| user_block_size | You can use field user_block_size to set specific block size. If you leave its default value Size(0,0) then automatic estimation of block size will be used (which is optimized for speed). By varying user_block_size you can reduce memory requirements at the cost of speed. | 
The following methods are supported for the CV_8U depth images for now:
The following methods are supported for the CV_32F images for now:
| void cv::cuda::meanShiftFiltering | ( | InputArray | src, | 
| OutputArray | dst, | ||
| int | sp, | ||
| int | sr, | ||
| TermCriteria | criteria = TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 5, 1), | ||
| Stream & | stream = Stream::Null() | ||
| ) | 
#include <opencv2/cudaimgproc.hpp>
Performs mean-shift filtering for each point of the source image.
| src | Source image. Only CV_8UC4 images are supported for now. | 
| dst | Destination image containing the color of mapped points. It has the same size and type as src . | 
| sp | Spatial window radius. | 
| sr | Color window radius. | 
| criteria | Termination criteria. See TermCriteria. | 
| stream | Stream for the asynchronous version. | 
It maps each point of the source image into another point. As a result, you have a new color and new position of each point.
| void cv::cuda::meanShiftProc | ( | InputArray | src, | 
| OutputArray | dstr, | ||
| OutputArray | dstsp, | ||
| int | sp, | ||
| int | sr, | ||
| TermCriteria | criteria = TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 5, 1), | ||
| Stream & | stream = Stream::Null() | ||
| ) | 
#include <opencv2/cudaimgproc.hpp>
Performs a mean-shift procedure and stores information about processed points (their colors and positions) in two images.
| src | Source image. Only CV_8UC4 images are supported for now. | 
| dstr | Destination image containing the color of mapped points. The size and type is the same as src . | 
| dstsp | Destination image containing the position of mapped points. The size is the same as src size. The type is CV_16SC2 . | 
| sp | Spatial window radius. | 
| sr | Color window radius. | 
| criteria | Termination criteria. See TermCriteria. | 
| stream | Stream for the asynchronous version. | 
| void cv::cuda::meanShiftSegmentation | ( | InputArray | src, | 
| OutputArray | dst, | ||
| int | sp, | ||
| int | sr, | ||
| int | minsize, | ||
| TermCriteria | criteria = TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 5, 1), | ||
| Stream & | stream = Stream::Null() | ||
| ) | 
#include <opencv2/cudaimgproc.hpp>
Performs a mean-shift segmentation of the source image and eliminates small segments.
| src | Source image. Only CV_8UC4 images are supported for now. | 
| dst | Segmented image with the same size and type as src (host memory). | 
| sp | Spatial window radius. | 
| sr | Color window radius. | 
| minsize | Minimum segment size. Smaller segments are merged. | 
| criteria | Termination criteria. See TermCriteria. | 
| stream | Stream for the asynchronous version. | 
 1.8.12
 1.8.12