|  | OpenCV
    3.4.3
    Open Source Computer Vision | 
#include "kmeans_index.h"
 
  
 | Classes | |
| class | KMeansDistanceComputer | 
| Public Types | |
| typedef void(KMeansIndex::* | centersAlgFunction) (int, int *, int, int *, int &) | 
| typedef Distance::ResultType | DistanceType | 
| typedef Distance::ElementType | ElementType | 
| Public Member Functions | |
| KMeansIndex (const Matrix< ElementType > &inputData, const IndexParams ¶ms=KMeansIndexParams(), Distance d=Distance()) | |
| KMeansIndex (const KMeansIndex &) | |
| virtual | ~KMeansIndex () | 
| void | buildIndex () CV_OVERRIDE | 
| void | chooseCentersGonzales (int k, int *indices, int indices_length, int *centers, int ¢ers_length) | 
| void | chooseCentersKMeanspp (int k, int *indices, int indices_length, int *centers, int ¢ers_length) | 
| void | chooseCentersRandom (int k, int *indices, int indices_length, int *centers, int ¢ers_length) | 
| void | findNeighbors (ResultSet< DistanceType > &result, const ElementType *vec, const SearchParams &searchParams) CV_OVERRIDE | 
| int | getClusterCenters (Matrix< DistanceType > ¢ers) | 
| IndexParams | getParameters () const CV_OVERRIDE | 
| flann_algorithm_t | getType () const CV_OVERRIDE | 
| void | loadIndex (FILE *stream) CV_OVERRIDE | 
| Loads the index from a stream.  More... | |
| KMeansIndex & | operator= (const KMeansIndex &) | 
| void | saveIndex (FILE *stream) CV_OVERRIDE | 
| Saves the index to a stream.  More... | |
| void | set_cb_index (float index) | 
| size_t | size () const CV_OVERRIDE | 
| int | usedMemory () const CV_OVERRIDE | 
| size_t | veclen () const CV_OVERRIDE | 
|  Public Member Functions inherited from cvflann::NNIndex< Distance > | |
| virtual | ~NNIndex () | 
| virtual void | knnSearch (const Matrix< ElementType > &queries, Matrix< int > &indices, Matrix< DistanceType > &dists, int knn, const SearchParams ¶ms) | 
| Perform k-nearest neighbor search.  More... | |
| virtual int | radiusSearch (const Matrix< ElementType > &query, Matrix< int > &indices, Matrix< DistanceType > &dists, float radius, const SearchParams ¶ms) | 
| Perform radius search.  More... | |
| Public Attributes | |
| centersAlgFunction | chooseCenters | 
Hierarchical kmeans index
Contains a tree constructed through a hierarchical kmeans clustering and other information for indexing a set of points for nearest-neighbour matching.
| typedef void(KMeansIndex::* cvflann::KMeansIndex< Distance >::centersAlgFunction) (int, int *, int, int *, int &) | 
| typedef Distance::ResultType cvflann::KMeansIndex< Distance >::DistanceType | 
| typedef Distance::ElementType cvflann::KMeansIndex< Distance >::ElementType | 
| 
 | inline | 
Index constructor
Params: inputData = dataset with the input features params = parameters passed to the hierarchical k-means algorithm
| cvflann::KMeansIndex< Distance >::KMeansIndex | ( | const KMeansIndex< Distance > & | ) | 
| 
 | inlinevirtual | 
Index destructor.
Release the memory used by the index.
| 
 | inlinevirtual | 
Builds the index
Implements cvflann::NNIndex< Distance >.
| 
 | inline | 
Chooses the initial centers in the k-means using Gonzales' algorithm so that the centers are spaced apart from each other.
Params: k = number of centers vecs = the dataset of points indices = indices in the dataset Returns:
| 
 | inline | 
Chooses the initial centers in the k-means using the algorithm proposed in the KMeans++ paper: Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
Implementation of this function was converted from the one provided in Arthur's code.
Params: k = number of centers vecs = the dataset of points indices = indices in the dataset Returns:
| 
 | inline | 
Chooses the initial centers in the k-means clustering in a random manner.
Params: k = number of centers vecs = the dataset of points indices = indices in the dataset indices_length = length of indices vector
| 
 | inlinevirtual | 
Find set of nearest neighbors to vec. Their indices are stored inside the result object.
Params: result = the result object in which the indices of the nearest-neighbors are stored vec = the vector for which to search the nearest neighbors searchParams = parameters that influence the search algorithm (checks, cb_index)
Implements cvflann::NNIndex< Distance >.
| 
 | inline | 
Clustering function that takes a cut in the hierarchical k-means tree and return the clusters centers of that clustering. Params: numClusters = number of clusters to have in the clustering computed Returns: number of cluster centers
| 
 | inlinevirtual | 
Implements cvflann::NNIndex< Distance >.
| 
 | inlinevirtual | 
Implements cvflann::NNIndex< Distance >.
| 
 | inlinevirtual | 
Loads the index from a stream.
| stream | The stream from which the index is loaded | 
Implements cvflann::NNIndex< Distance >.
| KMeansIndex& cvflann::KMeansIndex< Distance >::operator= | ( | const KMeansIndex< Distance > & | ) | 
| 
 | inlinevirtual | 
Saves the index to a stream.
| stream | The stream to save the index to | 
Implements cvflann::NNIndex< Distance >.
| 
 | inline | 
| 
 | inlinevirtual | 
Returns size of index.
Implements cvflann::NNIndex< Distance >.
| 
 | inlinevirtual | 
Computes the inde memory usage Returns: memory used by the index
Implements cvflann::NNIndex< Distance >.
| 
 | inlinevirtual | 
Returns the length of an index feature.
Implements cvflann::NNIndex< Distance >.
| centersAlgFunction cvflann::KMeansIndex< Distance >::chooseCenters | 
The function used for choosing the cluster centers.
 1.8.12
 1.8.12