OpenCV  3.4.20
Open Source Computer Vision
Public Member Functions | List of all members
cv::tracking::AugmentedUnscentedKalmanFilterParams Class Reference

Augmented Unscented Kalman filter parameters. The class for initialization parameters of Augmented Unscented Kalman filter. More...

#include <opencv2/tracking/kalman_filters.hpp>

Inheritance diagram for cv::tracking::AugmentedUnscentedKalmanFilterParams:
cv::tracking::UnscentedKalmanFilterParams

Public Member Functions

 AugmentedUnscentedKalmanFilterParams ()
 
 AugmentedUnscentedKalmanFilterParams (int dp, int mp, int cp, double processNoiseCovDiag, double measurementNoiseCovDiag, Ptr< UkfSystemModel > dynamicalSystem, int type=CV_64F)
 
void init (int dp, int mp, int cp, double processNoiseCovDiag, double measurementNoiseCovDiag, Ptr< UkfSystemModel > dynamicalSystem, int type=CV_64F)
 
- Public Member Functions inherited from cv::tracking::UnscentedKalmanFilterParams
 UnscentedKalmanFilterParams ()
 
 UnscentedKalmanFilterParams (int dp, int mp, int cp, double processNoiseCovDiag, double measurementNoiseCovDiag, Ptr< UkfSystemModel > dynamicalSystem, int type=CV_64F)
 
void init (int dp, int mp, int cp, double processNoiseCovDiag, double measurementNoiseCovDiag, Ptr< UkfSystemModel > dynamicalSystem, int type=CV_64F)
 

Additional Inherited Members

- Public Attributes inherited from cv::tracking::UnscentedKalmanFilterParams
double alpha
 Default is 1e-3. More...
 
double beta
 Default is 2.0. More...
 
int CP
 Dimensionality of the control vector. More...
 
int dataType
 Type of elements of vectors and matrices, default is CV_64F. More...
 
int DP
 Dimensionality of the state vector. More...
 
Mat errorCovInit
 State estimate cross-covariance matrix, DP x DP, default is identity. More...
 
double k
 Default is 0. More...
 
Mat measurementNoiseCov
 Measurement noise cross-covariance matrix, MP x MP. More...
 
Ptr< UkfSystemModelmodel
 Object of the class containing functions for computing the next state and the measurement. More...
 
int MP
 Dimensionality of the measurement vector. More...
 
Mat processNoiseCov
 Process noise cross-covariance matrix, DP x DP. More...
 
Mat stateInit
 Initial state, DP x 1, default is zero. More...
 

Detailed Description

Augmented Unscented Kalman filter parameters. The class for initialization parameters of Augmented Unscented Kalman filter.

Constructor & Destructor Documentation

◆ AugmentedUnscentedKalmanFilterParams() [1/2]

cv::tracking::AugmentedUnscentedKalmanFilterParams::AugmentedUnscentedKalmanFilterParams ( )
inline

◆ AugmentedUnscentedKalmanFilterParams() [2/2]

cv::tracking::AugmentedUnscentedKalmanFilterParams::AugmentedUnscentedKalmanFilterParams ( int  dp,
int  mp,
int  cp,
double  processNoiseCovDiag,
double  measurementNoiseCovDiag,
Ptr< UkfSystemModel dynamicalSystem,
int  type = CV_64F 
)
Parameters
dp- dimensionality of the state vector,
mp- dimensionality of the measurement vector,
cp- dimensionality of the control vector,
processNoiseCovDiag- value of elements on main diagonal process noise cross-covariance matrix,
measurementNoiseCovDiag- value of elements on main diagonal measurement noise cross-covariance matrix,
dynamicalSystem- ptr to object of the class containing functions for computing the next state and the measurement,
type- type of the created matrices that should be CV_32F or CV_64F.

Member Function Documentation

◆ init()

void cv::tracking::AugmentedUnscentedKalmanFilterParams::init ( int  dp,
int  mp,
int  cp,
double  processNoiseCovDiag,
double  measurementNoiseCovDiag,
Ptr< UkfSystemModel dynamicalSystem,
int  type = CV_64F 
)

The function for initialization of Augmented Unscented Kalman filter

Parameters
dp- dimensionality of the state vector,
mp- dimensionality of the measurement vector,
cp- dimensionality of the control vector,
processNoiseCovDiag- value of elements on main diagonal process noise cross-covariance matrix,
measurementNoiseCovDiag- value of elements on main diagonal measurement noise cross-covariance matrix,
dynamicalSystem- object of the class containing functions for computing the next state and the measurement,
type- type of the created matrices that should be CV_32F or CV_64F.

The documentation for this class was generated from the following file: