Package org.opencv.ml
Class RTrees
- java.lang.Object
- 
- org.opencv.core.Algorithm
- 
- org.opencv.ml.StatModel
- 
- org.opencv.ml.DTrees
- 
- org.opencv.ml.RTrees
 
 
 
 
- 
 public class RTrees extends DTrees The class implements the random forest predictor. SEE: REF: ml_intro_rtrees
- 
- 
Field Summary- 
Fields inherited from class org.opencv.ml.DTreesPREDICT_AUTO, PREDICT_MASK, PREDICT_MAX_VOTE, PREDICT_SUM
 - 
Fields inherited from class org.opencv.ml.StatModelCOMPRESSED_INPUT, PREPROCESSED_INPUT, RAW_OUTPUT, UPDATE_MODEL
 
- 
 - 
Constructor SummaryConstructors Modifier Constructor Description protectedRTrees(long addr)
 - 
Method SummaryAll Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description static RTrees__fromPtr__(long addr)static RTreescreate()Creates the empty model.protected voidfinalize()intgetActiveVarCount()SEE: setActiveVarCountbooleangetCalculateVarImportance()SEE: setCalculateVarImportancedoublegetOOBError()Returns the OOB error value, computed at the training stage when calcOOBError is set to true.TermCriteriagetTermCriteria()SEE: setTermCriteriaMatgetVarImportance()Returns the variable importance array.voidgetVotes(Mat samples, Mat results, int flags)Returns the result of each individual tree in the forest.static RTreesload(java.lang.String filepath)Loads and creates a serialized RTree from a file Use RTree::save to serialize and store an RTree to disk.static RTreesload(java.lang.String filepath, java.lang.String nodeName)Loads and creates a serialized RTree from a file Use RTree::save to serialize and store an RTree to disk.voidsetActiveVarCount(int val)getActiveVarCount SEE: getActiveVarCountvoidsetCalculateVarImportance(boolean val)getCalculateVarImportance SEE: getCalculateVarImportancevoidsetTermCriteria(TermCriteria val)getTermCriteria SEE: getTermCriteria- 
Methods inherited from class org.opencv.ml.DTreesgetCVFolds, getMaxCategories, getMaxDepth, getMinSampleCount, getPriors, getRegressionAccuracy, getTruncatePrunedTree, getUse1SERule, getUseSurrogates, setCVFolds, setMaxCategories, setMaxDepth, setMinSampleCount, setPriors, setRegressionAccuracy, setTruncatePrunedTree, setUse1SERule, setUseSurrogates
 - 
Methods inherited from class org.opencv.ml.StatModelcalcError, empty, getVarCount, isClassifier, isTrained, predict, predict, predict, train, train, train
 - 
Methods inherited from class org.opencv.core.Algorithmclear, getDefaultName, getNativeObjAddr, save
 
- 
 
- 
- 
- 
Method Detail- 
__fromPtr__public static RTrees __fromPtr__(long addr) 
 - 
getCalculateVarImportancepublic boolean getCalculateVarImportance() SEE: setCalculateVarImportance- Returns:
- automatically generated
 
 - 
setCalculateVarImportancepublic void setCalculateVarImportance(boolean val) getCalculateVarImportance SEE: getCalculateVarImportance- Parameters:
- val- automatically generated
 
 - 
getActiveVarCountpublic int getActiveVarCount() SEE: setActiveVarCount- Returns:
- automatically generated
 
 - 
setActiveVarCountpublic void setActiveVarCount(int val) getActiveVarCount SEE: getActiveVarCount- Parameters:
- val- automatically generated
 
 - 
getTermCriteriapublic TermCriteria getTermCriteria() SEE: setTermCriteria- Returns:
- automatically generated
 
 - 
setTermCriteriapublic void setTermCriteria(TermCriteria val) getTermCriteria SEE: getTermCriteria- Parameters:
- val- automatically generated
 
 - 
getVarImportancepublic Mat getVarImportance() Returns the variable importance array. The method returns the variable importance vector, computed at the training stage when CalculateVarImportance is set to true. If this flag was set to false, the empty matrix is returned.- Returns:
- automatically generated
 
 - 
getVotespublic void getVotes(Mat samples, Mat results, int flags) Returns the result of each individual tree in the forest. In case the model is a regression problem, the method will return each of the trees' results for each of the sample cases. If the model is a classifier, it will return a Mat with samples + 1 rows, where the first row gives the class number and the following rows return the votes each class had for each sample.- Parameters:
- samples- Array containing the samples for which votes will be calculated.
- results- Array where the result of the calculation will be written.
- flags- Flags for defining the type of RTrees.
 
 - 
getOOBErrorpublic double getOOBError() Returns the OOB error value, computed at the training stage when calcOOBError is set to true. If this flag was set to false, 0 is returned. The OOB error is also scaled by sample weighting.- Returns:
- automatically generated
 
 - 
createpublic static RTrees create() Creates the empty model. Use StatModel::train to train the model, StatModel::train to create and train the model, Algorithm::load to load the pre-trained model.- Returns:
- automatically generated
 
 - 
loadpublic static RTrees load(java.lang.String filepath, java.lang.String nodeName) Loads and creates a serialized RTree from a file Use RTree::save to serialize and store an RTree to disk. Load the RTree from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier- Parameters:
- filepath- path to serialized RTree
- nodeName- name of node containing the classifier
- Returns:
- automatically generated
 
 - 
loadpublic static RTrees load(java.lang.String filepath) Loads and creates a serialized RTree from a file Use RTree::save to serialize and store an RTree to disk. Load the RTree from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier- Parameters:
- filepath- path to serialized RTree
- Returns:
- automatically generated
 
 
- 
 
-