The interface for Unscented Kalman filter and Augmented Unscented Kalman filter.  
 More...
#include <opencv2/tracking/kalman_filters.hpp>
The interface for Unscented Kalman filter and Augmented Unscented Kalman filter. 
◆ ~UnscentedKalmanFilter()
  
  | 
        
          | virtual cv::tracking::UnscentedKalmanFilter::~UnscentedKalmanFilter | ( |  | ) |  |  | inlinevirtual | 
 
 
◆ correct()
  
  | 
        
          | virtual Mat cv::tracking::UnscentedKalmanFilter::correct | ( | InputArray | measurement | ) |  |  | pure virtual | 
 
The function performs correction step of the algorithm 
- Parameters
- 
  
    | measurement | - the current measurement vector, |  
 
- Returns
- the corrected estimate of the state. 
 
 
◆ getErrorCov()
  
  | 
        
          | virtual Mat cv::tracking::UnscentedKalmanFilter::getErrorCov | ( |  | ) | const |  | pure virtual | 
 
- Returns
- the error cross-covariance matrix. 
 
 
◆ getMeasurementNoiseCov()
  
  | 
        
          | virtual Mat cv::tracking::UnscentedKalmanFilter::getMeasurementNoiseCov | ( |  | ) | const |  | pure virtual | 
 
- Returns
- the measurement noise cross-covariance matrix. 
 
 
◆ getProcessNoiseCov()
  
  | 
        
          | virtual Mat cv::tracking::UnscentedKalmanFilter::getProcessNoiseCov | ( |  | ) | const |  | pure virtual | 
 
- Returns
- the process noise cross-covariance matrix. 
 
 
◆ getState()
  
  | 
        
          | virtual Mat cv::tracking::UnscentedKalmanFilter::getState | ( |  | ) | const |  | pure virtual | 
 
- Returns
- the current estimate of the state. 
 
 
◆ predict()
The function performs prediction step of the algorithm 
- Parameters
- 
  
    | control | - the current control vector, |  
 
- Returns
- the predicted estimate of the state. 
 
 
The documentation for this class was generated from the following file: