![]() |
OpenCV
3.4.17
Open Source Computer Vision
|
Classes | |
| class | cv::ml::ANN_MLP |
| Artificial Neural Networks - Multi-Layer Perceptrons. More... | |
| class | cv::ml::ANN_MLP_ANNEAL |
| Artificial Neural Networks - Multi-Layer Perceptrons. More... | |
| class | cv::ml::Boost |
| Boosted tree classifier derived from DTrees. More... | |
| class | cv::ml::DTrees |
| The class represents a single decision tree or a collection of decision trees. More... | |
| class | cv::ml::EM |
| The class implements the Expectation Maximization algorithm. More... | |
| class | cv::ml::KNearest |
| The class implements K-Nearest Neighbors model. More... | |
| class | cv::ml::LogisticRegression |
| Implements Logistic Regression classifier. More... | |
| class | cv::ml::NormalBayesClassifier |
| Bayes classifier for normally distributed data. More... | |
| class | cv::ml::ParamGrid |
| The structure represents the logarithmic grid range of statmodel parameters. More... | |
| class | cv::ml::RTrees |
| The class implements the random forest predictor. More... | |
| struct | cv::ml::SimulatedAnnealingSolverSystem |
| This class declares example interface for system state used in simulated annealing optimization algorithm. More... | |
| class | cv::ml::StatModel |
| Base class for statistical models in OpenCV ML. More... | |
| class | cv::ml::SVM |
| Support Vector Machines. More... | |
| class | cv::ml::SVMSGD |
| Stochastic Gradient Descent SVM classifier. More... | |
| class | cv::ml::TrainData |
| Class encapsulating training data. More... | |
Enumerations | |
| enum | cv::ml::ErrorTypes { cv::ml::TEST_ERROR = 0, cv::ml::TRAIN_ERROR = 1 } |
| Error types More... | |
| enum | cv::ml::SampleTypes { cv::ml::ROW_SAMPLE = 0, cv::ml::COL_SAMPLE = 1 } |
| Sample types. More... | |
| enum | cv::ml::VariableTypes { cv::ml::VAR_NUMERICAL =0, cv::ml::VAR_ORDERED =0, cv::ml::VAR_CATEGORICAL =1 } |
| Variable types. More... | |
Functions | |
| void | cv::ml::createConcentricSpheresTestSet (int nsamples, int nfeatures, int nclasses, OutputArray samples, OutputArray responses) |
| Creates test set. More... | |
| void | cv::ml::randMVNormal (InputArray mean, InputArray cov, int nsamples, OutputArray samples) |
| Generates sample from multivariate normal distribution. More... | |
| template<class SimulatedAnnealingSolverSystem > | |
| int | cv::ml::simulatedAnnealingSolver (SimulatedAnnealingSolverSystem &solverSystem, double initialTemperature, double finalTemperature, double coolingRatio, size_t iterationsPerStep, double *lastTemperature=NULL, cv::RNG &rngEnergy=cv::theRNG()) |
| The class implements simulated annealing for optimization. More... | |
The Machine Learning Library (MLL) is a set of classes and functions for statistical classification, regression, and clustering of data.
Most of the classification and regression algorithms are implemented as C++ classes. As the algorithms have different sets of features (like an ability to handle missing measurements or categorical input variables), there is a little common ground between the classes. This common ground is defined by the class cv::ml::StatModel that all the other ML classes are derived from.
See detailed overview here: Machine Learning Overview.
| enum cv::ml::ErrorTypes |
#include <opencv2/ml.hpp>
Error types
| Enumerator | |
|---|---|
| TEST_ERROR Python: cv.ml.TEST_ERROR | |
| TRAIN_ERROR Python: cv.ml.TRAIN_ERROR | |
| enum cv::ml::SampleTypes |
#include <opencv2/ml.hpp>
Sample types.
| Enumerator | |
|---|---|
| ROW_SAMPLE Python: cv.ml.ROW_SAMPLE | each training sample is a row of samples |
| COL_SAMPLE Python: cv.ml.COL_SAMPLE | each training sample occupies a column of samples |
#include <opencv2/ml.hpp>
Variable types.
| Enumerator | |
|---|---|
| VAR_NUMERICAL Python: cv.ml.VAR_NUMERICAL | same as VAR_ORDERED |
| VAR_ORDERED Python: cv.ml.VAR_ORDERED | ordered variables |
| VAR_CATEGORICAL Python: cv.ml.VAR_CATEGORICAL | categorical variables |
| void cv::ml::createConcentricSpheresTestSet | ( | int | nsamples, |
| int | nfeatures, | ||
| int | nclasses, | ||
| OutputArray | samples, | ||
| OutputArray | responses | ||
| ) |
#include <opencv2/ml.hpp>
Creates test set.
| void cv::ml::randMVNormal | ( | InputArray | mean, |
| InputArray | cov, | ||
| int | nsamples, | ||
| OutputArray | samples | ||
| ) |
#include <opencv2/ml.hpp>
Generates sample from multivariate normal distribution.
| mean | an average row vector |
| cov | symmetric covariation matrix |
| nsamples | returned samples count |
| samples | returned samples array |
| int cv::ml::simulatedAnnealingSolver | ( | SimulatedAnnealingSolverSystem & | solverSystem, |
| double | initialTemperature, | ||
| double | finalTemperature, | ||
| double | coolingRatio, | ||
| size_t | iterationsPerStep, | ||
| double * | lastTemperature = NULL, |
||
| cv::RNG & | rngEnergy = cv::theRNG() |
||
| ) |
#include <opencv2/ml.hpp>
The class implements simulated annealing for optimization.
[117] for details
| solverSystem | optimization system (see SimulatedAnnealingSolverSystem) |
| initialTemperature | initial temperature |
| finalTemperature | final temperature |
| coolingRatio | temperature step multiplies |
| iterationsPerStep | number of iterations per temperature changing step |
| lastTemperature | optional output for last used temperature |
| rngEnergy | specify custom random numbers generator (cv::theRNG() by default) |
1.8.13