#include <iostream>
#include <time.h>
vector< float > get_svm_detector( 
const Ptr< SVM >& svm );
void convert_to_ml( 
const std::vector< Mat > & train_samples, 
Mat& trainData );
 void load_images( 
const String & dirname, vector< Mat > & img_lst, 
bool showImages );
 void sample_neg( 
const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, 
const Size & size );
 void computeHOGs( 
const Size wsize, 
const vector< Mat > & img_lst, vector< Mat > & gradient_lst, 
bool use_flip );
 void test_trained_detector( 
String obj_det_filename, 
String test_dir, 
String videofilename );
 vector< float > get_svm_detector( 
const Ptr< SVM >& svm )
{
    
    const int sv_total = sv.
rows;
     
    vector< float > hog_detector( sv.
cols + 1 );
    memcpy( &hog_detector[0], sv.
ptr(), sv.
cols*
sizeof( hog_detector[0] ) );
    hog_detector[sv.
cols] = (float)-rho;
    return hog_detector;
}
void convert_to_ml( 
const vector< Mat > & train_samples, 
Mat& trainData )
 {
    
    const int rows = (int)train_samples.size();
    const int cols = (int)
std::max( train_samples[0].cols, train_samples[0].rows );
     for( size_t i = 0 ; i < train_samples.size(); ++i )
    {
        CV_Assert( train_samples[i].cols == 1 || train_samples[i].rows == 1 );
         if( train_samples[i].cols == 1 )
        {
            tmp.copyTo( trainData.
row( (
int)i ) );
        }
        else if( train_samples[i].rows == 1 )
        {
            train_samples[i].copyTo( trainData.
row( (
int)i ) );
        }
    }
}
void load_images( 
const String & dirname, vector< Mat > & img_lst, 
bool showImages = 
false )
 {
    vector< String > files;
    for ( size_t i = 0; i < files.size(); ++i )
    {
        {
            cout << files[i] << " is invalid!" << endl; 
            continue;
        }
        if ( showImages )
        {
        }
        img_lst.push_back( img );
    }
}
void sample_neg( 
const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, 
const Size & size )
 {
    srand( (unsigned int)time( NULL ) );
    for ( size_t i = 0; i < full_neg_lst.size(); i++ )
        if ( full_neg_lst[i].cols > box.
width && full_neg_lst[i].rows > box.
height )
         {
            box.
x = rand() % ( full_neg_lst[i].cols - box.
width );
            box.
y = rand() % ( full_neg_lst[i].rows - box.
height );
            Mat roi = full_neg_lst[i]( box );
             neg_lst.push_back( roi.
clone() );
        }
}
void computeHOGs( 
const Size wsize, 
const vector< Mat > & img_lst, vector< Mat > & gradient_lst, 
bool use_flip )
 {
    vector< float > descriptors;
    for( size_t i = 0 ; i < img_lst.size(); i++ )
    {
        if ( img_lst[i].cols >= wsize.
width && img_lst[i].rows >= wsize.
height )
         {
                          ( img_lst[i].rows - wsize.
height ) / 2,
            gradient_lst.push_back( 
Mat( descriptors ).clone() );
            if ( use_flip )
            {
                gradient_lst.push_back( 
Mat( descriptors ).clone() );
            }
        }
    }
}
void test_trained_detector( 
String obj_det_filename, 
String test_dir, 
String videofilename )
 {
    cout << "Testing trained detector..." << endl;
    hog.
load( obj_det_filename );
    vector< String > files;
    int delay = 0;
    if ( videofilename != "" )
    {
        if ( videofilename.
size() == 1 && isdigit( videofilename[0] ) )
             cap.
open( videofilename[0] - 
'0' );
        else
            cap.
open( videofilename );
    }
    obj_det_filename = "testing " + obj_det_filename;
    for( size_t i=0;; i++ )
    {
        {
            cap >> img;
            delay = 1;
        }
        else if( i < files.size() )
        {
        }
        {
            return;
        }
        vector< Rect > detections;
        vector< double > foundWeights;
        for ( size_t j = 0; j < detections.size(); j++ )
        {
            Scalar color = 
Scalar( 0, foundWeights[j] * foundWeights[j] * 200, 0 );
         }
        imshow( obj_det_filename, img );
         {
            return;
        }
    }
}
int main( int argc, char** argv )
{
    const char* keys =
    {
        "{help h|     | show help message}"
        "{pd    |     | path of directory contains positive images}"
        "{nd    |     | path of directory contains negative images}"
        "{td    |     | path of directory contains test images}"
        "{tv    |     | test video file name}"
        "{dw    |     | width of the detector}"
        "{dh    |     | height of the detector}"
        "{f     |false| indicates if the program will generate and use mirrored samples or not}"
        "{d     |false| train twice}"
        "{t     |false| test a trained detector}"
        "{v     |false| visualize training steps}"
        "{fn    |my_detector.yml| file name of trained SVM}"
    };
    if ( parser.has( "help" ) )
    {
        parser.printMessage();
        exit( 0 );
    }
    int detector_width = parser.get< int >( "dw" );
    int detector_height = parser.get< int >( "dh" );
    bool test_detector = parser.get< bool >( "t" );
    bool train_twice = parser.get< bool >( "d" );
    bool visualization = parser.get< bool >( "v" );
    bool flip_samples = parser.get< bool >( "f" );
    if ( test_detector )
    {
        test_trained_detector( obj_det_filename, test_dir, videofilename );
        exit( 0 );
    }
    if( pos_dir.
empty() || neg_dir.empty() )
     {
        parser.printMessage();
        cout << "Wrong number of parameters.\n\n"
             << "Example command line:\n" << argv[0] << " -dw=64 -dh=128 -pd=/INRIAPerson/96X160H96/Train/pos -nd=/INRIAPerson/neg -td=/INRIAPerson/Test/pos -fn=HOGpedestrian64x128.xml -d\n"
             << "\nExample command line for testing trained detector:\n" << argv[0] << " -t -fn=HOGpedestrian64x128.xml -td=/INRIAPerson/Test/pos";
        exit( 1 );
    }
    vector< Mat > pos_lst, full_neg_lst, neg_lst, gradient_lst;
    vector< int > labels;
    clog << "Positive images are being loaded..." ;
    load_images( pos_dir, pos_lst, visualization );
    if ( pos_lst.size() > 0 )
    {
        clog << "...[done] " << pos_lst.size() << " files." << endl;
    }
    else
    {
        clog << "no image in " << pos_dir <<endl;
        return 1;
    }
    Size pos_image_size = pos_lst[0].size();
     if ( detector_width && detector_height )
    {
        pos_image_size = 
Size( detector_width, detector_height );
    }
    else
    {
        for ( size_t i = 0; i < pos_lst.size(); ++i )
        {
            if( pos_lst[i].size() != pos_image_size )
            {
                cout << "All positive images should be same size!" << endl;
                exit( 1 );
            }
        }
        pos_image_size = pos_image_size / 8 * 8;
    }
    clog << "Negative images are being loaded...";
    load_images( neg_dir, full_neg_lst, visualization );
    clog << "...[done] " << full_neg_lst.size() << " files." << endl;
    clog << "Negative images are being processed...";
    sample_neg( full_neg_lst, neg_lst, pos_image_size );
    clog << "...[done] " << neg_lst.size() << " files." << endl;
    clog << "Histogram of Gradients are being calculated for positive images...";
    computeHOGs( pos_image_size, pos_lst, gradient_lst, flip_samples );
    size_t positive_count = gradient_lst.size();
    labels.assign( positive_count, +1 );
    clog << "...[done] ( positive images count : " << positive_count << " )" << endl;
    clog << "Histogram of Gradients are being calculated for negative images...";
    computeHOGs( pos_image_size, neg_lst, gradient_lst, flip_samples );
    size_t negative_count = gradient_lst.size() - positive_count;
    labels.insert( labels.end(), negative_count, -1 );
    clog << "...[done] ( negative images count : " << negative_count << " )" << endl;
    convert_to_ml( gradient_lst, train_data );
    clog << "Training SVM...";
    
    clog << "...[done]" << endl;
    if ( train_twice )
    {
        clog << "Testing trained detector on negative images. This might take a few minutes...";
        
        vector< Rect > detections;
        vector< double > foundWeights;
        for ( size_t i = 0; i < full_neg_lst.size(); i++ )
        {
            if ( full_neg_lst[i].cols >= pos_image_size.
width && full_neg_lst[i].rows >= pos_image_size.
height )
             else
                detections.clear();
            for ( size_t j = 0; j < detections.size(); j++ )
            {
                Mat detection = full_neg_lst[i]( detections[j] ).clone();
                 neg_lst.push_back( detection );
            }
            if ( visualization )
            {
                for ( size_t j = 0; j < detections.size(); j++ )
                {
                }
                imshow( 
"testing trained detector on negative images", full_neg_lst[i] );
             }
        }
        clog << "...[done]" << endl;
        gradient_lst.clear();
        clog << "Histogram of Gradients are being calculated for positive images...";
        computeHOGs( pos_image_size, pos_lst, gradient_lst, flip_samples );
        positive_count = gradient_lst.size();
        clog << "...[done] ( positive count : " << positive_count << " )" << endl;
        clog << "Histogram of Gradients are being calculated for negative images...";
        computeHOGs( pos_image_size, neg_lst, gradient_lst, flip_samples );
        negative_count = gradient_lst.size() - positive_count;
        clog << "...[done] ( negative count : " << negative_count << " )" << endl;
        labels.clear();
        labels.assign(positive_count, +1);
        labels.insert(labels.end(), negative_count, -1);
        clog << "Training SVM again...";
        convert_to_ml( gradient_lst, train_data );
        clog << "...[done]" << endl;
    }
    hog.
save( obj_det_filename );
    test_trained_detector( obj_det_filename, test_dir, videofilename );
    return 0;
}