Package org.opencv.ml
Class NormalBayesClassifier
- java.lang.Object
- 
- org.opencv.core.Algorithm
- 
- org.opencv.ml.StatModel
- 
- org.opencv.ml.NormalBayesClassifier
 
 
 
- 
 public class NormalBayesClassifier extends StatModel Bayes classifier for normally distributed data. SEE: REF: ml_intro_bayes
- 
- 
Field Summary- 
Fields inherited from class org.opencv.ml.StatModelCOMPRESSED_INPUT, PREPROCESSED_INPUT, RAW_OUTPUT, UPDATE_MODEL
 
- 
 - 
Constructor SummaryConstructors Modifier Constructor Description protectedNormalBayesClassifier(long addr)
 - 
Method SummaryAll Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description static NormalBayesClassifier__fromPtr__(long addr)static NormalBayesClassifiercreate()Creates empty model Use StatModel::train to train the model after creation.protected voidfinalize()static NormalBayesClassifierload(java.lang.String filepath)Loads and creates a serialized NormalBayesClassifier from a file Use NormalBayesClassifier::save to serialize and store an NormalBayesClassifier to disk.static NormalBayesClassifierload(java.lang.String filepath, java.lang.String nodeName)Loads and creates a serialized NormalBayesClassifier from a file Use NormalBayesClassifier::save to serialize and store an NormalBayesClassifier to disk.floatpredictProb(Mat inputs, Mat outputs, Mat outputProbs)Predicts the response for sample(s).floatpredictProb(Mat inputs, Mat outputs, Mat outputProbs, int flags)Predicts the response for sample(s).- 
Methods inherited from class org.opencv.ml.StatModelcalcError, empty, getVarCount, isClassifier, isTrained, predict, predict, predict, train, train, train
 - 
Methods inherited from class org.opencv.core.Algorithmclear, getDefaultName, getNativeObjAddr, save
 
- 
 
- 
- 
- 
Method Detail- 
__fromPtr__public static NormalBayesClassifier __fromPtr__(long addr) 
 - 
createpublic static NormalBayesClassifier create() Creates empty model Use StatModel::train to train the model after creation.- Returns:
- automatically generated
 
 - 
loadpublic static NormalBayesClassifier load(java.lang.String filepath, java.lang.String nodeName) Loads and creates a serialized NormalBayesClassifier from a file Use NormalBayesClassifier::save to serialize and store an NormalBayesClassifier to disk. Load the NormalBayesClassifier from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier- Parameters:
- filepath- path to serialized NormalBayesClassifier
- nodeName- name of node containing the classifier
- Returns:
- automatically generated
 
 - 
loadpublic static NormalBayesClassifier load(java.lang.String filepath) Loads and creates a serialized NormalBayesClassifier from a file Use NormalBayesClassifier::save to serialize and store an NormalBayesClassifier to disk. Load the NormalBayesClassifier from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier- Parameters:
- filepath- path to serialized NormalBayesClassifier
- Returns:
- automatically generated
 
 - 
predictProbpublic float predictProb(Mat inputs, Mat outputs, Mat outputProbs, int flags) Predicts the response for sample(s). The method estimates the most probable classes for input vectors. Input vectors (one or more) are stored as rows of the matrix inputs. In case of multiple input vectors, there should be one output vector outputs. The predicted class for a single input vector is returned by the method. The vector outputProbs contains the output probabilities corresponding to each element of result.- Parameters:
- inputs- automatically generated
- outputs- automatically generated
- outputProbs- automatically generated
- flags- automatically generated
- Returns:
- automatically generated
 
 - 
predictProbpublic float predictProb(Mat inputs, Mat outputs, Mat outputProbs) Predicts the response for sample(s). The method estimates the most probable classes for input vectors. Input vectors (one or more) are stored as rows of the matrix inputs. In case of multiple input vectors, there should be one output vector outputs. The predicted class for a single input vector is returned by the method. The vector outputProbs contains the output probabilities corresponding to each element of result.- Parameters:
- inputs- automatically generated
- outputs- automatically generated
- outputProbs- automatically generated
- Returns:
- automatically generated
 
 
- 
 
-