OpenCV
3.3.1
Open Source Computer Vision
|
\( L_p \) - normalization layer. More...
#include "all_layers.hpp"
Static Public Member Functions | |
static Ptr< NormalizeBBoxLayer > | create (const LayerParams ¶ms) |
Static Public Member Functions inherited from cv::Algorithm | |
template<typename _Tp > | |
static Ptr< _Tp > | load (const String &filename, const String &objname=String()) |
Loads algorithm from the file. More... | |
template<typename _Tp > | |
static Ptr< _Tp > | loadFromString (const String &strModel, const String &objname=String()) |
Loads algorithm from a String. More... | |
template<typename _Tp > | |
static Ptr< _Tp > | read (const FileNode &fn) |
Reads algorithm from the file node. More... | |
Public Attributes | |
bool | acrossSpatial |
float | epsilon |
float | pnorm |
Public Attributes inherited from cv::dnn::Layer | |
std::vector< Mat > | blobs |
List of learned parameters must be stored here to allow read them by using Net::getParam(). More... | |
String | name |
Name of the layer instance, can be used for logging or other internal purposes. More... | |
int | preferableTarget |
prefer target for layer forwarding More... | |
String | type |
Type name which was used for creating layer by layer factory. More... | |
Additional Inherited Members | |
Public Member Functions inherited from cv::dnn::Layer | |
Layer () | |
Layer (const LayerParams ¶ms) | |
Initializes only name, type and blobs fields. More... | |
virtual | ~Layer () |
virtual void | applyHalideScheduler (Ptr< BackendNode > &node, const std::vector< Mat *> &inputs, const std::vector< Mat > &outputs, int targetId) const |
Automatic Halide scheduling based on layer hyper-parameters. More... | |
virtual void | finalize (const std::vector< Mat *> &input, std::vector< Mat > &output) |
Computes and sets internal parameters according to inputs, outputs and blobs. More... | |
void | finalize (const std::vector< Mat > &inputs, std::vector< Mat > &outputs) |
std::vector< Mat > | finalize (const std::vector< Mat > &inputs) |
virtual void | forward (std::vector< Mat *> &input, std::vector< Mat > &output, std::vector< Mat > &internals)=0 |
Given the input blobs, computes the output blobs . More... | |
void | forward (const std::vector< Mat > &inputs, std::vector< Mat > &outputs, std::vector< Mat > &internals) |
virtual int64 | getFLOPS (const std::vector< MatShape > &inputs, const std::vector< MatShape > &outputs) const |
virtual bool | getMemoryShapes (const std::vector< MatShape > &inputs, const int requiredOutputs, std::vector< MatShape > &outputs, std::vector< MatShape > &internals) const |
virtual Ptr< BackendNode > | initHalide (const std::vector< Ptr< BackendWrapper > > &inputs) |
Returns Halide backend node. More... | |
virtual int | inputNameToIndex (String inputName) |
Returns index of input blob into the input array. More... | |
virtual int | outputNameToIndex (String outputName) |
Returns index of output blob in output array. More... | |
void | run (const std::vector< Mat > &inputs, std::vector< Mat > &outputs, std::vector< Mat > &internals) |
Allocates layer and computes output. More... | |
virtual bool | setActivation (const Ptr< ActivationLayer > &layer) |
Tries to attach to the layer the subsequent activation layer, i.e. do the layer fusion in a partial case. More... | |
virtual bool | setBatchNorm (const Ptr< BatchNormLayer > &layer) |
Tries to attach to the layer the subsequent batch normalization layer, i.e. do the layer fusion in a partial case. More... | |
void | setParamsFrom (const LayerParams ¶ms) |
Initializes only name, type and blobs fields. More... | |
virtual bool | setScale (const Ptr< ScaleLayer > &layer) |
Tries to attach to the layer the subsequent scaling layer, i.e. do the layer fusion in a partial case. More... | |
virtual bool | supportBackend (int backendId) |
Ask layer if it support specific backend for doing computations. More... | |
virtual Ptr< BackendNode > | tryAttach (const Ptr< BackendNode > &node) |
Implement layers fusing. More... | |
virtual void | unsetAttached () |
"Deattaches" all the layers, attached to particular layer. More... | |
Public Member Functions inherited from cv::Algorithm | |
Algorithm () | |
virtual | ~Algorithm () |
virtual void | clear () |
Clears the algorithm state. More... | |
virtual bool | empty () const |
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read. More... | |
virtual String | getDefaultName () const |
virtual void | read (const FileNode &fn) |
Reads algorithm parameters from a file storage. More... | |
virtual void | save (const String &filename) const |
virtual void | write (FileStorage &fs) const |
Stores algorithm parameters in a file storage. More... | |
Protected Member Functions inherited from cv::Algorithm | |
void | writeFormat (FileStorage &fs) const |
\( L_p \) - normalization layer.
p | Normalization factor. The most common p = 1 for \( L_1 \) - normalization or p = 2 for \( L_2 \) - normalization or a custom one. |
eps | Parameter \( \epsilon \) to prevent a division by zero. |
across_spatial | If true, normalize an input across all non-batch dimensions. Otherwise normalize an every channel separately. |
Across spatial:
\[ norm = \sqrt[p]{\epsilon + \sum_{x, y, c} |src(x, y, c)|^p } \\ dst(x, y, c) = \frac{ src(x, y, c) }{norm} \]
Channel wise normalization:
\[ norm(c) = \sqrt[p]{\epsilon + \sum_{x, y} |src(x, y, c)|^p } \\ dst(x, y, c) = \frac{ src(x, y, c) }{norm(c)} \]
Where x, y
- spatial cooridnates, c
- channel.
An every sample in the batch is normalized separately. Optionally, output is scaled by the trained parameters.
|
static |
bool cv::dnn::NormalizeBBoxLayer::acrossSpatial |
float cv::dnn::NormalizeBBoxLayer::epsilon |
float cv::dnn::NormalizeBBoxLayer::pnorm |