OpenCV
3.3.0
Open Source Computer Vision
|
Classes | |
class | cv::text::BaseOCR |
class | cv::text::OCRHMMDecoder |
OCRHMMDecoder class provides an interface for OCR using Hidden Markov Models. More... | |
class | cv::text::OCRTesseract |
OCRTesseract class provides an interface with the tesseract-ocr API (v3.02.02) in C++. More... | |
Enumerations | |
enum | { cv::text::OCR_LEVEL_WORD, cv::text::OCR_LEVEL_TEXTLINE } |
enum | cv::text::classifier_type { cv::text::OCR_KNN_CLASSIFIER = 0, cv::text::OCR_CNN_CLASSIFIER = 1 } |
enum | cv::text::decoder_mode { cv::text::OCR_DECODER_VITERBI = 0 } |
enum | cv::text::ocr_engine_mode { cv::text::OEM_TESSERACT_ONLY, cv::text::OEM_CUBE_ONLY, cv::text::OEM_TESSERACT_CUBE_COMBINED, cv::text::OEM_DEFAULT } |
Tesseract.OcrEngineMode Enumeration. More... | |
enum | cv::text::page_seg_mode { cv::text::PSM_OSD_ONLY, cv::text::PSM_AUTO_OSD, cv::text::PSM_AUTO_ONLY, cv::text::PSM_AUTO, cv::text::PSM_SINGLE_COLUMN, cv::text::PSM_SINGLE_BLOCK_VERT_TEXT, cv::text::PSM_SINGLE_BLOCK, cv::text::PSM_SINGLE_LINE, cv::text::PSM_SINGLE_WORD, cv::text::PSM_CIRCLE_WORD, cv::text::PSM_SINGLE_CHAR } |
Tesseract.PageSegMode Enumeration. More... | |
Functions | |
Ptr< OCRHMMDecoder::ClassifierCallback > | cv::text::loadOCRHMMClassifier (const String &filename, int classifier) |
Allow to implicitly load the default character classifier when creating an OCRHMMDecoder object. More... | |
Ptr< OCRHMMDecoder::ClassifierCallback > | cv::text::loadOCRHMMClassifierCNN (const String &filename) |
Allow to implicitly load the default character classifier when creating an OCRHMMDecoder object. More... | |
Ptr< OCRHMMDecoder::ClassifierCallback > | cv::text::loadOCRHMMClassifierNM (const String &filename) |
Allow to implicitly load the default character classifier when creating an OCRHMMDecoder object. More... | |
Ptr<OCRHMMDecoder::ClassifierCallback> cv::text::loadOCRHMMClassifier | ( | const String & | filename, |
int | classifier | ||
) |
Allow to implicitly load the default character classifier when creating an OCRHMMDecoder object.
filename | The XML or YAML file with the classifier model (e.g. OCRBeamSearch_CNN_model_data.xml.gz) |
classifier | Can be one of classifier_type enum values. |
Ptr<OCRHMMDecoder::ClassifierCallback> cv::text::loadOCRHMMClassifierCNN | ( | const String & | filename | ) |
Allow to implicitly load the default character classifier when creating an OCRHMMDecoder object.
filename | The XML or YAML file with the classifier model (e.g. OCRBeamSearch_CNN_model_data.xml.gz) |
The CNN default classifier is based in the scene text recognition method proposed by Adam Coates & Andrew NG in [Coates11a]. The character classifier consists in a Single Layer Convolutional Neural Network and a linear classifier. It is applied to the input image in a sliding window fashion, providing a set of recognitions at each window location.
Ptr<OCRHMMDecoder::ClassifierCallback> cv::text::loadOCRHMMClassifierNM | ( | const String & | filename | ) |
Allow to implicitly load the default character classifier when creating an OCRHMMDecoder object.
filename | The XML or YAML file with the classifier model (e.g. OCRHMM_knn_model_data.xml) |
The KNN default classifier is based in the scene text recognition method proposed by Lukás Neumann & Jiri Matas in [Neumann11b]. Basically, the region (contour) in the input image is normalized to a fixed size, while retaining the centroid and aspect ratio, in order to extract a feature vector based on gradient orientations along the chain-code of its perimeter. Then, the region is classified using a KNN model trained with synthetic data of rendered characters with different standard font types.