OpenCV
3.2.0
Open Source Computer Vision
|
Classes | |
class | cv::dnn::AbsLayer |
class | cv::dnn::BaseConvolutionLayer |
class | cv::dnn::BNLLLayer |
class | cv::dnn::ConcatLayer |
class | cv::dnn::ConvolutionLayer |
class | cv::dnn::CropLayer |
class | cv::dnn::DeconvolutionLayer |
class | cv::dnn::EltwiseLayer |
class | cv::dnn::InnerProductLayer |
class | cv::dnn::LRNLayer |
class | cv::dnn::LSTMLayer |
LSTM recurrent layer. More... | |
class | cv::dnn::MVNLayer |
class | cv::dnn::PoolingLayer |
class | cv::dnn::PowerLayer |
class | cv::dnn::ReLULayer |
class | cv::dnn::ReshapeLayer |
class | cv::dnn::RNNLayer |
Classical recurrent layer. More... | |
class | cv::dnn::SigmoidLayer |
class | cv::dnn::SliceLayer |
class | cv::dnn::SoftmaxLayer |
class | cv::dnn::SplitLayer |
class | cv::dnn::TanHLayer |
This subsection of dnn module contains information about bult-in layers and their descriptions.
Classes listed here, in fact, provides C++ API for creating intances of bult-in layers. In addition to this way of layers instantiation, there is a more common factory API (see Utilities for New Layers Registration), it allows to create layers dynamically (by name) and register new ones. You can use both API, but factory API is less convinient for native C++ programming and basically designed for use inside importers (see Importer, createCaffeImporter(), createTorchImporter()).
Bult-in layers partially reproduce functionality of corresponding Caffe and Torch7 layers. In partuclar, the following layers and Caffe Importer were tested to reproduce Caffe functionality: