OpenCV
3.1.0
Open Source Computer Vision
|
Base class for statistical models in OpenCV ML. More...
#include "ml.hpp"
Public Types | |
enum | Flags { UPDATE_MODEL = 1, RAW_OUTPUT =1, COMPRESSED_INPUT =2, PREPROCESSED_INPUT =4 } |
Public Member Functions | |
virtual float | calcError (const Ptr< TrainData > &data, bool test, OutputArray resp) const |
Computes error on the training or test dataset. More... | |
virtual bool | empty () const |
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read. More... | |
virtual int | getVarCount () const =0 |
Returns the number of variables in training samples. More... | |
virtual bool | isClassifier () const =0 |
Returns true if the model is classifier. More... | |
virtual bool | isTrained () const =0 |
Returns true if the model is trained. More... | |
virtual float | predict (InputArray samples, OutputArray results=noArray(), int flags=0) const =0 |
Predicts response(s) for the provided sample(s) More... | |
virtual bool | train (const Ptr< TrainData > &trainData, int flags=0) |
Trains the statistical model. More... | |
virtual bool | train (InputArray samples, int layout, InputArray responses) |
Trains the statistical model. More... | |
Public Member Functions inherited from cv::Algorithm | |
Algorithm () | |
virtual | ~Algorithm () |
virtual void | clear () |
Clears the algorithm state. More... | |
virtual String | getDefaultName () const |
virtual void | read (const FileNode &fn) |
Reads algorithm parameters from a file storage. More... | |
virtual void | save (const String &filename) const |
virtual void | write (FileStorage &fs) const |
Stores algorithm parameters in a file storage. More... | |
Static Public Member Functions | |
template<typename _Tp > | |
static Ptr< _Tp > | train (const Ptr< TrainData > &data, int flags=0) |
Create and train model with default parameters. More... | |
Static Public Member Functions inherited from cv::Algorithm | |
template<typename _Tp > | |
static Ptr< _Tp > | load (const String &filename, const String &objname=String()) |
Loads algorithm from the file. More... | |
template<typename _Tp > | |
static Ptr< _Tp > | loadFromString (const String &strModel, const String &objname=String()) |
Loads algorithm from a String. More... | |
template<typename _Tp > | |
static Ptr< _Tp > | read (const FileNode &fn) |
Reads algorithm from the file node. More... | |
Base class for statistical models in OpenCV ML.
|
virtual |
Computes error on the training or test dataset.
data | the training data |
test | if true, the error is computed over the test subset of the data, otherwise it's computed over the training subset of the data. Please note that if you loaded a completely different dataset to evaluate already trained classifier, you will probably want not to set the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so that the error is computed for the whole new set. Yes, this sounds a bit confusing. |
resp | the optional output responses. |
The method uses StatModel::predict to compute the error. For regression models the error is computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
|
virtual |
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read.
Reimplemented from cv::Algorithm.
|
pure virtual |
Returns the number of variables in training samples.
|
pure virtual |
Returns true if the model is classifier.
|
pure virtual |
Returns true if the model is trained.
|
pure virtual |
Predicts response(s) for the provided sample(s)
samples | The input samples, floating-point matrix |
results | The optional output matrix of results. |
flags | The optional flags, model-dependent. See cv::ml::StatModel::Flags. |
Implemented in cv::ml::LogisticRegression.
Trains the statistical model.
trainData | training data that can be loaded from file using TrainData::loadFromCSV or created with TrainData::create. |
flags | optional flags, depending on the model. Some of the models can be updated with the new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP). |
|
virtual |
Trains the statistical model.
samples | training samples |
layout | See ml::SampleTypes. |
responses | vector of responses associated with the training samples. |
|
inlinestatic |
Create and train model with default parameters.
The class must implement static create()
method with no parameters or with all default parameter values