![]() |
OpenCV
3.0.0-rc1
Open Source Computer Vision
|
Classes | |
| class | cv::ml::ANN_MLP |
| Artificial Neural Networks - Multi-Layer Perceptrons. More... | |
| class | cv::ml::Boost |
| Boosted tree classifier derived from DTrees. More... | |
| class | cv::ml::DTrees |
| The class represents a single decision tree or a collection of decision trees. More... | |
| class | cv::ml::EM |
| The class implements the Expectation Maximization algorithm. More... | |
| class | cv::ml::KNearest |
| The class implements K-Nearest Neighbors model. More... | |
| class | cv::ml::LogisticRegression |
| Implements Logistic Regression classifier. More... | |
| class | cv::ml::NormalBayesClassifier |
| Bayes classifier for normally distributed data. More... | |
| class | cv::ml::ParamGrid |
| The structure represents the logarithmic grid range of statmodel parameters. More... | |
| class | cv::ml::RTrees |
| The class implements the random forest predictor. More... | |
| class | cv::ml::StatModel |
| Base class for statistical models in OpenCV ML. More... | |
| class | cv::ml::SVM |
| Support Vector Machines. More... | |
| class | cv::ml::TrainData |
| Class encapsulating training data. More... | |
Enumerations | |
| enum | cv::ml::ErrorTypes { cv::ml::TEST_ERROR = 0, cv::ml::TRAIN_ERROR = 1 } |
| Error types More... | |
| enum | cv::ml::SampleTypes { cv::ml::ROW_SAMPLE = 0, cv::ml::COL_SAMPLE = 1 } |
| Sample types. More... | |
| enum | cv::ml::VariableTypes { cv::ml::VAR_NUMERICAL =0, cv::ml::VAR_ORDERED =0, cv::ml::VAR_CATEGORICAL =1 } |
| Variable types. More... | |
Functions | |
| void | cv::ml::createConcentricSpheresTestSet (int nsamples, int nfeatures, int nclasses, OutputArray samples, OutputArray responses) |
| Creates test set. More... | |
| void | cv::ml::randGaussMixture (InputArray means, InputArray covs, InputArray weights, int nsamples, OutputArray samples, OutputArray sampClasses) |
| Generates sample from gaussian mixture distribution. More... | |
| void | cv::ml::randMVNormal (InputArray mean, InputArray cov, int nsamples, OutputArray samples) |
| Generates sample from multivariate normal distribution. More... | |
The Machine Learning Library (MLL) is a set of classes and functions for statistical classification, regression, and clustering of data.
Most of the classification and regression algorithms are implemented as C++ classes. As the algorithms have different sets of features (like an ability to handle missing measurements or categorical input variables), there is a little common ground between the classes. This common ground is defined by the class cv::ml::StatModel that all the other ML classes are derived from.
See detailed overview here: Machine Learning Overview.
| enum cv::ml::ErrorTypes |
| enum cv::ml::SampleTypes |
| void cv::ml::createConcentricSpheresTestSet | ( | int | nsamples, |
| int | nfeatures, | ||
| int | nclasses, | ||
| OutputArray | samples, | ||
| OutputArray | responses | ||
| ) |
Creates test set.
| void cv::ml::randGaussMixture | ( | InputArray | means, |
| InputArray | covs, | ||
| InputArray | weights, | ||
| int | nsamples, | ||
| OutputArray | samples, | ||
| OutputArray | sampClasses | ||
| ) |
Generates sample from gaussian mixture distribution.
| void cv::ml::randMVNormal | ( | InputArray | mean, |
| InputArray | cov, | ||
| int | nsamples, | ||
| OutputArray | samples | ||
| ) |
Generates sample from multivariate normal distribution.
| mean | an average row vector |
| cov | symmetric covariation matrix |
| nsamples | returned samples count |
| samples | returned samples array |
1.8.7