![]() |
OpenCV
3.0.0-rc1
Open Source Computer Vision
|
WaldBoost object detector from [112] . More...
#include "xobjdetect.hpp"
Public Member Functions | |
| virtual float | predict (const Ptr< FeatureEvaluator > &feature_evaluator) const =0 |
| Predict objects class given object that can compute object features. More... | |
| virtual std::vector< int > | train (Mat &data, const Mat &labels, bool use_fast_log=false)=0 |
| Train WaldBoost cascade for given data. More... | |
Public Member Functions inherited from cv::Algorithm | |
| Algorithm () | |
| virtual | ~Algorithm () |
| virtual void | clear () |
| Clears the algorithm state. More... | |
| virtual bool | empty () const |
| Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read. More... | |
| virtual String | getDefaultName () const |
| virtual void | read (const FileNode &fn) |
| Reads algorithm parameters from a file storage. More... | |
| virtual void | save (const String &filename) const |
| virtual void | write (FileStorage &fs) const |
| Stores algorithm parameters in a file storage. More... | |
Additional Inherited Members | |
Static Public Member Functions inherited from cv::Algorithm | |
| template<typename _Tp > | |
| static Ptr< _Tp > | load (const String &filename, const String &objname=String()) |
| Loads algorithm from the file. More... | |
| template<typename _Tp > | |
| static Ptr< _Tp > | loadFromString (const String &strModel, const String &objname=String()) |
| Loads algorithm from a String. More... | |
| template<typename _Tp > | |
| static Ptr< _Tp > | read (const FileNode &fn) |
| Reads algorithm from the file node. More... | |
|
pure virtual |
Predict objects class given object that can compute object features.
Returns unnormed confidence value — measure of confidence that object is from class +1.
| feature_evaluator | object that can compute features by demand |
|
pure virtual |
Train WaldBoost cascade for given data.
Returns feature indices chosen for cascade. Feature enumeration starts from 0.
| data | matrix of feature values, size M x N, one feature per row |
| labels | matrix of samples class labels, size 1 x N. Labels can be from {-1, +1} |
| use_fast_log |
1.8.7