OpenCV  3.0.0-rc1
Open Source Computer Vision
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Groups Pages
Bioinspired Module Retina Introduction

Retina

Note
do not forget that the retina model is included in the following namespace : cv::bioinspired

Introduction

Class which provides the main controls to the Gipsa/Listic labs human retina model. This is a non separable spatio-temporal filter modelling the two main retina information channels :

From a general point of view, this filter whitens the image spectrum and corrects luminance thanks to local adaptation. An other important property is its hability to filter out spatio-temporal noise while enhancing details. This model originates from Jeanny Herault work [63] . It has been involved in Alexandre Benoit phd and his current research [10], [114] (he currently maintains this module within OpenCV). It includes the work of other Jeanny's phd student such as [29] and the log polar transformations of Barthelemy Durette described in Jeanny's book.

Note
  • For ease of use in computer vision applications, the two retina channels are applied homogeneously on all the input images. This does not follow the real retina topology but this can still be done using the log sampling capabilities proposed within the class.
  • Extend the retina description and code use in the tutorial/contrib section for complementary explanations.

Preliminary illustration

As a preliminary presentation, let's start with a visual example. We propose to apply the filter on a low quality color jpeg image with backlight problems. Here is the considered input... *"Well, my eyes were able to see more that this strange black shadow..."*

retinaInput.jpg
a low quality color jpeg image with backlight problems.

Below, the retina foveal model applied on the entire image with default parameters. Here contours are enforced, halo effects are voluntary visible with this configuration. See parameters discussion below and increase horizontalCellsGain near 1 to remove them.

retinaOutput_default.jpg
the retina foveal model applied on the entire image with default parameters. Here contours are enforced, luminance is corrected and halo effects are voluntary visible with this configuration, increase horizontalCellsGain near 1 to remove them.

Below, a second retina foveal model output applied on the entire image with a parameters setup focused on naturalness perception. *"Hey, i now recognize my cat, looking at the mountains at the end of the day !"*. Here contours are enforced, luminance is corrected but halos are avoided with this configuration. The backlight effect is corrected and highlight details are still preserved. Then, even on a low quality jpeg image, if some luminance information remains, the retina is able to reconstruct a proper visual signal. Such configuration is also usefull for High Dynamic Range (HDR) images compression to 8bit images as discussed in [10] and in the demonstration codes discussed below. As shown at the end of the page, parameters change from defaults are :

retinaOutput_realistic.jpg
the retina foveal model applied on the entire image with 'naturalness' parameters. Here contours are enforced but are avoided with this configuration, horizontalCellsGain is 0.3 and photoreceptorsLocalAdaptationSensitivity=ganglioncellsSensitivity=0.89.

As observed in this preliminary demo, the retina can be settled up with various parameters, by default, as shown on the figure above, the retina strongly reduces mean luminance energy and enforces all details of the visual scene. Luminance energy and halo effects can be modulated (exagerated to cancelled as shown on the two examples). In order to use your own parameters, you can use at least one time the write(String fs) method which will write a proper XML file with all default parameters. Then, tweak it on your own and reload them at any time using method setup(String fs). These methods update a Retina::RetinaParameters member structure that is described hereafter. XML parameters file samples are shown at the end of the page.

Here is an overview of the abstract Retina interface, allocate one instance with the createRetina functions.:

namespace cv{namespace bioinspired{
class Retina : public Algorithm
{
public:
// parameters setup instance
struct RetinaParameters; // this class is detailled later
// main method for input frame processing (all use method, can also perform High Dynamic Range tone mapping)
void run (InputArray inputImage);
// specific method aiming at correcting luminance only (faster High Dynamic Range tone mapping)
void applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage)
// output buffers retreival methods
// -> foveal color vision details channel with luminance and noise correction
void getParvo (OutputArray retinaOutput_parvo);
void getParvoRAW (OutputArray retinaOutput_parvo);// retreive original output buffers without any normalisation
const Mat getParvoRAW () const;// retreive original output buffers without any normalisation
// -> peripheral monochrome motion and events (transient information) channel
void getMagno (OutputArray retinaOutput_magno);
void getMagnoRAW (OutputArray retinaOutput_magno); // retreive original output buffers without any normalisation
const Mat getMagnoRAW () const;// retreive original output buffers without any normalisation
// reset retina buffers... equivalent to closing your eyes for some seconds
void clearBuffers ();
// retreive input and output buffers sizes
// setup methods with specific parameters specification of global xml config file loading/write
void setup (String retinaParameterFile="", const bool applyDefaultSetupOnFailure=true);
void setup (FileStorage &fs, const bool applyDefaultSetupOnFailure=true);
void setup (RetinaParameters newParameters);
struct Retina::RetinaParameters getParameters ();
const String printSetup ();
virtual void write (String fs) const;
virtual void write (FileStorage &fs) const;
void setupOPLandIPLParvoChannel (const bool colorMode=true, const bool normaliseOutput=true, const float photoreceptorsLocalAdaptationSensitivity=0.7, const float photoreceptorsTemporalConstant=0.5, const float photoreceptorsSpatialConstant=0.53, const float horizontalCellsGain=0, const float HcellsTemporalConstant=1, const float HcellsSpatialConstant=7, const float ganglionCellsSensitivity=0.7);
void setupIPLMagnoChannel (const bool normaliseOutput=true, const float parasolCells_beta=0, const float parasolCells_tau=0, const float parasolCells_k=7, const float amacrinCellsTemporalCutFrequency=1.2, const float V0CompressionParameter=0.95, const float localAdaptintegration_tau=0, const float localAdaptintegration_k=7);
void setColorSaturation (const bool saturateColors=true, const float colorSaturationValue=4.0);
void activateMovingContoursProcessing (const bool activate);
void activateContoursProcessing (const bool activate);
};
// Allocators
cv::Ptr<Retina> createRetina (Size inputSize);
cv::Ptr<Retina> createRetina (Size inputSize, const bool colorMode, RETINA_COLORSAMPLINGMETHOD colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const double reductionFactor=1.0, const double samplingStrenght=10.0);
}} // cv and bioinspired namespaces end

Description

Class which allows the Gipsa (preliminary work) / Listic (code maintainer and user) labs retina model to be used. This class allows human retina spatio-temporal image processing to be applied on still images, images sequences and video sequences. Briefly, here are the main human retina model properties:

Use : this model can be used basically for spatio-temporal video effects but also in the aim of :

Literature

For more information, refer to the following papers :

This retina filter code includes the research contributions of phd/research collegues from which code has been redrawn by the author :

Demos and experiments !

Note
Complementary to the following examples, have a look at the Retina tutorial in the tutorial/contrib section for complementary explanations.**

Take a look at the provided C++ examples provided with OpenCV :