Base classes which give a general interface for each specialized type of saliency algorithm and provide utility methods for each algorithm in its class.
StaticSaliency class:
class CV_EXPORTS StaticSaliency : public virtual Saliency
{
public:
bool computeBinaryMap( const Mat& saliencyMap, Mat& binaryMap );
protected:
virtual bool computeSaliencyImpl( const InputArray image, OutputArray saliencyMap ) = 0;
};
This function perform a binary map of given saliency map. This is obtained in this way:
In a first step, to improve the definition of interest areas and facilitate identification of targets, a segmentation by clustering is performed, using K-means algorithm. Then, to gain a binary representation of clustered saliency map, since values of the map can vary according to the characteristics of frame under analysis, it is not convenient to use a fixed threshold. So, Otsu’s algorithm is used, which assumes that the image to be thresholded contains two classes of pixels or bi-modal histograms (e.g. foreground and back-ground pixels); later on, the algorithm calculates the optimal threshold separating those two classes, so that their intra-class variance is minimal.
Parameters: |
|
---|