Previous topic

Caltech Pedestrian Detection Benchmark

Next topic

TUMindoor Dataset

KITTI Vision Benchmark

class SLAM_kitti

Implements loading dataset:

“KITTI Vision Benchmark”: http://www.cvlibs.net/datasets/kitti/eval_odometry.php

Note

Usage

  1. From link above download “Odometry” dataset files: data_odometry_gray\data_odometry_color\data_odometry_velodyne\data_odometry_poses\data_odometry_calib.zip.
  2. Unpack data_odometry_poses.zip, it creates folder dataset/poses/. After that unpack data_odometry_gray.zip, data_odometry_color.zip, data_odometry_velodyne.zip. Folder dataset/sequences/ will be created with folders 00/..21/. Each of these folders will contain: image_0/, image_1/, image_2/, image_3/, velodyne/ and files calib.txt & times.txt. These two last files will be replaced after unpacking data_odometry_calib.zip at the end.
  3. To load data run: ./opencv/build/bin/example_datasets_slam_kitti -p=/home/user/path_to_unpacked_folder/dataset/

References:

[Geiger2012CVPR]Andreas Geiger and Philip Lenz and Raquel Urtasun. Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. CVPR, 2012
[Geiger2013IJRR]Andreas Geiger and Philip Lenz and Christoph Stiller and Raquel Urtasun. Vision meets Robotics: The KITTI Dataset. IJRR, 2013
[Fritsch2013ITSC]Jannik Fritsch and Tobias Kuehnl and Andreas Geiger. A New Performance Measure and Evaluation Benchmark for Road Detection Algorithms. ITSC, 2013