In this tutorial you will learn how to:
It is the process of taking pixels from one place in the image and locating them in another position in a new image.
To accomplish the mapping process, it might be necessary to do some interpolation for non-integer pixel locations, since there will not always be a one-to-one-pixel correspondence between source and destination images.
We can express the remap for every pixel location as:
where is the remapped image, the source image and is the mapping function that operates on .
Let’s think in a quick example. Imagine that we have an image and, say, we want to do a remap such that:
What would happen? It is easily seen that the image would flip in the direction. For instance, consider the input image:
observe how the red circle changes positions with respect to x (considering the horizontal direction):
In OpenCV, the function remap offers a simple remapping implementation.
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
#include <stdio.h>
using namespace cv;
/// Global variables
Mat src, dst;
Mat map_x, map_y;
char* remap_window = "Remap demo";
int ind = 0;
/// Function Headers
void update_map( void );
/*
* @function main
*/
int main( int argc, char** argv )
{
/// Load the image
src = imread( argv[1], 1 );
/// Create dst, map_x and map_y with the same size as src:
dst.create( src.size(), src.type() );
map_x.create( src.size(), CV_32FC1 );
map_y.create( src.size(), CV_32FC1 );
/// Create window
namedWindow( remap_window, WINDOW_AUTOSIZE );
/// Loop
while( true )
{
/// Each 1 sec. Press ESC to exit the program
int c = waitKey( 1000 );
if( (char)c == 27 )
{ break; }
/// Update map_x & map_y. Then apply remap
update_map();
remap( src, dst, map_x, map_y, INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0) );
/// Display results
imshow( remap_window, dst );
}
return 0;
}
/*
* @function update_map
* @brief Fill the map_x and map_y matrices with 4 types of mappings
*/
void update_map( void )
{
ind = ind%4;
for( int j = 0; j < src.rows; j++ )
{ for( int i = 0; i < src.cols; i++ )
{
switch( ind )
{
case 0:
if( i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75 )
{
map_x.at<float>(j,i) = 2*( i - src.cols*0.25 ) + 0.5 ;
map_y.at<float>(j,i) = 2*( j - src.rows*0.25 ) + 0.5 ;
}
else
{ map_x.at<float>(j,i) = 0 ;
map_y.at<float>(j,i) = 0 ;
}
break;
case 1:
map_x.at<float>(j,i) = i ;
map_y.at<float>(j,i) = src.rows - j ;
break;
case 2:
map_x.at<float>(j,i) = src.cols - i ;
map_y.at<float>(j,i) = j ;
break;
case 3:
map_x.at<float>(j,i) = src.cols - i ;
map_y.at<float>(j,i) = src.rows - j ;
break;
} // end of switch
}
}
ind++;
}
Create some variables we will use:
Mat src, dst;
Mat map_x, map_y;
char* remap_window = "Remap demo";
int ind = 0;
Load an image:
src = imread( argv[1], 1 );
Create the destination image and the two mapping matrices (for x and y )
dst.create( src.size(), src.type() );
map_x.create( src.size(), CV_32FC1 );
map_y.create( src.size(), CV_32FC1 );
Create a window to display results
namedWindow( remap_window, WINDOW_AUTOSIZE );
Establish a loop. Each 1000 ms we update our mapping matrices (mat_x and mat_y) and apply them to our source image:
while( true )
{
/// Each 1 sec. Press ESC to exit the program
int c = waitKey( 1000 );
if( (char)c == 27 )
{ break; }
/// Update map_x & map_y. Then apply remap
update_map();
remap( src, dst, map_x, map_y, INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0) );
/// Display results
imshow( remap_window, dst );
}
The function that applies the remapping is remap. We give the following arguments:
How do we update our mapping matrices mat_x and mat_y? Go on reading:
Updating the mapping matrices: We are going to perform 4 different mappings:
Reduce the picture to half its size and will display it in the middle:
for all pairs such that: and
Turn the image upside down:
Reflect the image from left to right:
Combination of b and c:
This is expressed in the following snippet. Here, map_x represents the first coordinate of h(i,j) and map_y the second coordinate.
for( int j = 0; j < src.rows; j++ ) { for( int i = 0; i < src.cols; i++ ) { switch( ind ) { case 0: if( i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75 ) { map_x.at<float>(j,i) = 2*( i - src.cols*0.25 ) + 0.5 ; map_y.at<float>(j,i) = 2*( j - src.rows*0.25 ) + 0.5 ; } else { map_x.at<float>(j,i) = 0 ; map_y.at<float>(j,i) = 0 ; } break; case 1: map_x.at<float>(j,i) = i ; map_y.at<float>(j,i) = src.rows - j ; break; case 2: map_x.at<float>(j,i) = src.cols - i ; map_y.at<float>(j,i) = j ; break; case 3: map_x.at<float>(j,i) = src.cols - i ; map_y.at<float>(j,i) = src.rows - j ; break; } // end of switch } } ind++; }
After compiling the code above, you can execute it giving as argument an image path. For instance, by using the following image:
This is the result of reducing it to half the size and centering it:
Turning it upside down:
Reflecting it in the x direction:
Reflecting it in both directions: