In this tutorial you will learn how to:
The Hough Circle Transform works in a roughly analogous way to the Hough Line Transform explained in the previous tutorial.
In the line detection case, a line was defined by two parameters . In the circle case, we need three parameters to define a circle:
where define the center position (green point) and is the radius, which allows us to completely define a circle, as it can be seen below:
For sake of efficiency, OpenCV implements a detection method slightly trickier than the standard Hough Transform: The Hough gradient method, which is made up of two main stages. The first stage involves edge detection and finding the possible circle centers and the second stage finds the best radius for each candidate center. For more details, please check the book Learning OpenCV or your favorite Computer Vision bibliography
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
#include <stdio.h>
using namespace cv;
/* @function main */
int main(int argc, char** argv)
{
Mat src, src_gray;
/// Read the image
src = imread( argv[1], 1 );
if( !src.data )
{ return -1; }
/// Convert it to gray
cvtColor( src, src_gray, COLOR_BGR2GRAY );
/// Reduce the noise so we avoid false circle detection
GaussianBlur( src_gray, src_gray, Size(9, 9), 2, 2 );
vector<Vec3f> circles;
/// Apply the Hough Transform to find the circles
HoughCircles( src_gray, circles, HOUGH_GRADIENT, 1, src_gray.rows/8, 200, 100, 0, 0 );
/// Draw the circles detected
for( size_t i = 0; i < circles.size(); i++ )
{
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]);
// circle center
circle( src, center, 3, Scalar(0,255,0), -1, 8, 0 );
// circle outline
circle( src, center, radius, Scalar(0,0,255), 3, 8, 0 );
}
/// Show your results
namedWindow( "Hough Circle Transform Demo", WINDOW_AUTOSIZE );
imshow( "Hough Circle Transform Demo", src );
waitKey(0);
return 0;
}
Load an image
src = imread( argv[1], 1 );
if( !src.data )
{ return -1; }
Convert it to grayscale:
cvtColor( src, src_gray, COLOR_BGR2GRAY );
Apply a Gaussian blur to reduce noise and avoid false circle detection:
GaussianBlur( src_gray, src_gray, Size(9, 9), 2, 2 );
Proceed to apply Hough Circle Transform:
vector<Vec3f> circles;
HoughCircles( src_gray, circles, HOUGH_GRADIENT, 1, src_gray.rows/8, 200, 100, 0, 0 );
with the arguments:
Draw the detected circles:
for( size_t i = 0; i < circles.size(); i++ )
{
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]);
// circle center
circle( src, center, 3, Scalar(0,255,0), -1, 8, 0 );
// circle outline
circle( src, center, radius, Scalar(0,0,255), 3, 8, 0 );
}
You can see that we will draw the circle(s) on red and the center(s) with a small green dot
Display the detected circle(s):
namedWindow( "Hough Circle Transform Demo", WINDOW_AUTOSIZE );
imshow( "Hough Circle Transform Demo", src );
Wait for the user to exit the program
waitKey(0);
The result of running the code above with a test image is shown below: