Package org.opencv.stereo
Class Stereo
- java.lang.Object
-
- org.opencv.stereo.Stereo
-
public class Stereo extends java.lang.Object
-
-
Field Summary
Fields Modifier and Type Field Description static int
STEREO_ZERO_DISPARITY
-
Constructor Summary
Constructors Constructor Description Stereo()
-
Method Summary
All Methods Static Methods Concrete Methods Modifier and Type Method Description static void
filterSpeckles(Mat img, double newVal, int maxSpeckleSize, double maxDiff)
Filters off small noise blobs (speckles) in the disparity mapstatic void
filterSpeckles(Mat img, double newVal, int maxSpeckleSize, double maxDiff, Mat buf)
Filters off small noise blobs (speckles) in the disparity mapstatic void
fisheye_stereoRectify(Mat K1, Mat D1, Mat K2, Mat D2, Size imageSize, Mat R, Mat tvec, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags)
Stereo rectification for fisheye camera modelstatic void
fisheye_stereoRectify(Mat K1, Mat D1, Mat K2, Mat D2, Size imageSize, Mat R, Mat tvec, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags, Size newImageSize)
Stereo rectification for fisheye camera modelstatic void
fisheye_stereoRectify(Mat K1, Mat D1, Mat K2, Mat D2, Size imageSize, Mat R, Mat tvec, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags, Size newImageSize, double balance)
Stereo rectification for fisheye camera modelstatic void
fisheye_stereoRectify(Mat K1, Mat D1, Mat K2, Mat D2, Size imageSize, Mat R, Mat tvec, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags, Size newImageSize, double balance, double fov_scale)
Stereo rectification for fisheye camera modelstatic Rect
getValidDisparityROI(Rect roi1, Rect roi2, int minDisparity, int numberOfDisparities, int blockSize)
static void
reprojectImageTo3D(Mat disparity, Mat _3dImage, Mat Q)
Reprojects a disparity image to 3D space.static void
reprojectImageTo3D(Mat disparity, Mat _3dImage, Mat Q, boolean handleMissingValues)
Reprojects a disparity image to 3D space.static void
reprojectImageTo3D(Mat disparity, Mat _3dImage, Mat Q, boolean handleMissingValues, int ddepth)
Reprojects a disparity image to 3D space.static void
stereoRectify(Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q)
Computes rectification transforms for each head of a calibrated stereo camera.static void
stereoRectify(Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags)
Computes rectification transforms for each head of a calibrated stereo camera.static void
stereoRectify(Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags, double alpha)
Computes rectification transforms for each head of a calibrated stereo camera.static void
stereoRectify(Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags, double alpha, Size newImageSize)
Computes rectification transforms for each head of a calibrated stereo camera.static void
stereoRectify(Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags, double alpha, Size newImageSize, Rect validPixROI1)
Computes rectification transforms for each head of a calibrated stereo camera.static void
stereoRectify(Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags, double alpha, Size newImageSize, Rect validPixROI1, Rect validPixROI2)
Computes rectification transforms for each head of a calibrated stereo camera.static boolean
stereoRectifyUncalibrated(Mat points1, Mat points2, Mat F, Size imgSize, Mat H1, Mat H2)
Computes a rectification transform for an uncalibrated stereo camera.static boolean
stereoRectifyUncalibrated(Mat points1, Mat points2, Mat F, Size imgSize, Mat H1, Mat H2, double threshold)
Computes a rectification transform for an uncalibrated stereo camera.static void
validateDisparity(Mat disparity, Mat cost, int minDisparity, int numberOfDisparities)
static void
validateDisparity(Mat disparity, Mat cost, int minDisparity, int numberOfDisparities, int disp12MaxDisp)
-
-
-
Field Detail
-
STEREO_ZERO_DISPARITY
public static final int STEREO_ZERO_DISPARITY
- See Also:
- Constant Field Values
-
-
Method Detail
-
stereoRectify
public static void stereoRectify(Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags, double alpha, Size newImageSize, Rect validPixROI1, Rect validPixROI2)
Computes rectification transforms for each head of a calibrated stereo camera.- Parameters:
cameraMatrix1
- First camera intrinsic matrix.distCoeffs1
- First camera distortion parameters.cameraMatrix2
- Second camera intrinsic matrix.distCoeffs2
- Second camera distortion parameters.imageSize
- Size of the image used for stereo calibration.R
- Rotation matrix from the coordinate system of the first camera to the second camera, see REF: stereoCalibrate.T
- Translation vector from the coordinate system of the first camera to the second camera, see REF: stereoCalibrate.R1
- Output 3x3 rectification transform (rotation matrix) for the first camera. This matrix brings points given in the unrectified first camera's coordinate system to points in the rectified first camera's coordinate system. In more technical terms, it performs a change of basis from the unrectified first camera's coordinate system to the rectified first camera's coordinate system.R2
- Output 3x3 rectification transform (rotation matrix) for the second camera. This matrix brings points given in the unrectified second camera's coordinate system to points in the rectified second camera's coordinate system. In more technical terms, it performs a change of basis from the unrectified second camera's coordinate system to the rectified second camera's coordinate system.P1
- Output 3x4 projection matrix in the new (rectified) coordinate systems for the first camera, i.e. it projects points given in the rectified first camera coordinate system into the rectified first camera's image.P2
- Output 3x4 projection matrix in the new (rectified) coordinate systems for the second camera, i.e. it projects points given in the rectified first camera coordinate system into the rectified second camera's image.Q
- Output \(4 \times 4\) disparity-to-depth mapping matrix (see REF: reprojectImageTo3D).flags
- Operation flags that may be zero or REF: STEREO_ZERO_DISPARITY . If the flag is set, the function makes the principal points of each camera have the same pixel coordinates in the rectified views. And if the flag is not set, the function may still shift the images in the horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the useful image area.alpha
- Free scaling parameter. If it is -1 or absent, the function performs the default scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified images are zoomed and shifted so that only valid pixels are visible (no black areas after rectification). alpha=1 means that the rectified image is decimated and shifted so that all the pixels from the original images from the cameras are retained in the rectified images (no source image pixels are lost). Any intermediate value yields an intermediate result between those two extreme cases.newImageSize
- New image resolution after rectification. The same size should be passed to #initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0) is passed (default), it is set to the original imageSize . Setting it to a larger value can help you preserve details in the original image, especially when there is a big radial distortion.validPixROI1
- Optional output rectangles inside the rectified images where all the pixels are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller (see the picture below).validPixROI2
- Optional output rectangles inside the rectified images where all the pixels are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller (see the picture below). The function computes the rotation matrices for each camera that (virtually) make both camera image planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies the dense stereo correspondence problem. The function takes the matrices computed by #stereoCalibrate as input. As output, it provides two rotation matrices and also two projection matrices in the new coordinates. The function distinguishes the following two cases:- Horizontal stereo: the first and the second camera views are shifted relative to each other mainly along the x-axis (with possible small vertical shift). In the rectified images, the corresponding epipolar lines in the left and right cameras are horizontal and have the same y-coordinate. P1 and P2 look like:
- Vertical stereo: the first and the second camera views are shifted relative to each other mainly in the vertical direction (and probably a bit in the horizontal direction too). The epipolar lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
-
stereoRectify
public static void stereoRectify(Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags, double alpha, Size newImageSize, Rect validPixROI1)
Computes rectification transforms for each head of a calibrated stereo camera.- Parameters:
cameraMatrix1
- First camera intrinsic matrix.distCoeffs1
- First camera distortion parameters.cameraMatrix2
- Second camera intrinsic matrix.distCoeffs2
- Second camera distortion parameters.imageSize
- Size of the image used for stereo calibration.R
- Rotation matrix from the coordinate system of the first camera to the second camera, see REF: stereoCalibrate.T
- Translation vector from the coordinate system of the first camera to the second camera, see REF: stereoCalibrate.R1
- Output 3x3 rectification transform (rotation matrix) for the first camera. This matrix brings points given in the unrectified first camera's coordinate system to points in the rectified first camera's coordinate system. In more technical terms, it performs a change of basis from the unrectified first camera's coordinate system to the rectified first camera's coordinate system.R2
- Output 3x3 rectification transform (rotation matrix) for the second camera. This matrix brings points given in the unrectified second camera's coordinate system to points in the rectified second camera's coordinate system. In more technical terms, it performs a change of basis from the unrectified second camera's coordinate system to the rectified second camera's coordinate system.P1
- Output 3x4 projection matrix in the new (rectified) coordinate systems for the first camera, i.e. it projects points given in the rectified first camera coordinate system into the rectified first camera's image.P2
- Output 3x4 projection matrix in the new (rectified) coordinate systems for the second camera, i.e. it projects points given in the rectified first camera coordinate system into the rectified second camera's image.Q
- Output \(4 \times 4\) disparity-to-depth mapping matrix (see REF: reprojectImageTo3D).flags
- Operation flags that may be zero or REF: STEREO_ZERO_DISPARITY . If the flag is set, the function makes the principal points of each camera have the same pixel coordinates in the rectified views. And if the flag is not set, the function may still shift the images in the horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the useful image area.alpha
- Free scaling parameter. If it is -1 or absent, the function performs the default scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified images are zoomed and shifted so that only valid pixels are visible (no black areas after rectification). alpha=1 means that the rectified image is decimated and shifted so that all the pixels from the original images from the cameras are retained in the rectified images (no source image pixels are lost). Any intermediate value yields an intermediate result between those two extreme cases.newImageSize
- New image resolution after rectification. The same size should be passed to #initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0) is passed (default), it is set to the original imageSize . Setting it to a larger value can help you preserve details in the original image, especially when there is a big radial distortion.validPixROI1
- Optional output rectangles inside the rectified images where all the pixels are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller (see the picture below). are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller (see the picture below). The function computes the rotation matrices for each camera that (virtually) make both camera image planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies the dense stereo correspondence problem. The function takes the matrices computed by #stereoCalibrate as input. As output, it provides two rotation matrices and also two projection matrices in the new coordinates. The function distinguishes the following two cases:- Horizontal stereo: the first and the second camera views are shifted relative to each other mainly along the x-axis (with possible small vertical shift). In the rectified images, the corresponding epipolar lines in the left and right cameras are horizontal and have the same y-coordinate. P1 and P2 look like:
- Vertical stereo: the first and the second camera views are shifted relative to each other mainly in the vertical direction (and probably a bit in the horizontal direction too). The epipolar lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
-
stereoRectify
public static void stereoRectify(Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags, double alpha, Size newImageSize)
Computes rectification transforms for each head of a calibrated stereo camera.- Parameters:
cameraMatrix1
- First camera intrinsic matrix.distCoeffs1
- First camera distortion parameters.cameraMatrix2
- Second camera intrinsic matrix.distCoeffs2
- Second camera distortion parameters.imageSize
- Size of the image used for stereo calibration.R
- Rotation matrix from the coordinate system of the first camera to the second camera, see REF: stereoCalibrate.T
- Translation vector from the coordinate system of the first camera to the second camera, see REF: stereoCalibrate.R1
- Output 3x3 rectification transform (rotation matrix) for the first camera. This matrix brings points given in the unrectified first camera's coordinate system to points in the rectified first camera's coordinate system. In more technical terms, it performs a change of basis from the unrectified first camera's coordinate system to the rectified first camera's coordinate system.R2
- Output 3x3 rectification transform (rotation matrix) for the second camera. This matrix brings points given in the unrectified second camera's coordinate system to points in the rectified second camera's coordinate system. In more technical terms, it performs a change of basis from the unrectified second camera's coordinate system to the rectified second camera's coordinate system.P1
- Output 3x4 projection matrix in the new (rectified) coordinate systems for the first camera, i.e. it projects points given in the rectified first camera coordinate system into the rectified first camera's image.P2
- Output 3x4 projection matrix in the new (rectified) coordinate systems for the second camera, i.e. it projects points given in the rectified first camera coordinate system into the rectified second camera's image.Q
- Output \(4 \times 4\) disparity-to-depth mapping matrix (see REF: reprojectImageTo3D).flags
- Operation flags that may be zero or REF: STEREO_ZERO_DISPARITY . If the flag is set, the function makes the principal points of each camera have the same pixel coordinates in the rectified views. And if the flag is not set, the function may still shift the images in the horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the useful image area.alpha
- Free scaling parameter. If it is -1 or absent, the function performs the default scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified images are zoomed and shifted so that only valid pixels are visible (no black areas after rectification). alpha=1 means that the rectified image is decimated and shifted so that all the pixels from the original images from the cameras are retained in the rectified images (no source image pixels are lost). Any intermediate value yields an intermediate result between those two extreme cases.newImageSize
- New image resolution after rectification. The same size should be passed to #initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0) is passed (default), it is set to the original imageSize . Setting it to a larger value can help you preserve details in the original image, especially when there is a big radial distortion. are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller (see the picture below). are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller (see the picture below). The function computes the rotation matrices for each camera that (virtually) make both camera image planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies the dense stereo correspondence problem. The function takes the matrices computed by #stereoCalibrate as input. As output, it provides two rotation matrices and also two projection matrices in the new coordinates. The function distinguishes the following two cases:- Horizontal stereo: the first and the second camera views are shifted relative to each other mainly along the x-axis (with possible small vertical shift). In the rectified images, the corresponding epipolar lines in the left and right cameras are horizontal and have the same y-coordinate. P1 and P2 look like:
- Vertical stereo: the first and the second camera views are shifted relative to each other mainly in the vertical direction (and probably a bit in the horizontal direction too). The epipolar lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
-
stereoRectify
public static void stereoRectify(Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags, double alpha)
Computes rectification transforms for each head of a calibrated stereo camera.- Parameters:
cameraMatrix1
- First camera intrinsic matrix.distCoeffs1
- First camera distortion parameters.cameraMatrix2
- Second camera intrinsic matrix.distCoeffs2
- Second camera distortion parameters.imageSize
- Size of the image used for stereo calibration.R
- Rotation matrix from the coordinate system of the first camera to the second camera, see REF: stereoCalibrate.T
- Translation vector from the coordinate system of the first camera to the second camera, see REF: stereoCalibrate.R1
- Output 3x3 rectification transform (rotation matrix) for the first camera. This matrix brings points given in the unrectified first camera's coordinate system to points in the rectified first camera's coordinate system. In more technical terms, it performs a change of basis from the unrectified first camera's coordinate system to the rectified first camera's coordinate system.R2
- Output 3x3 rectification transform (rotation matrix) for the second camera. This matrix brings points given in the unrectified second camera's coordinate system to points in the rectified second camera's coordinate system. In more technical terms, it performs a change of basis from the unrectified second camera's coordinate system to the rectified second camera's coordinate system.P1
- Output 3x4 projection matrix in the new (rectified) coordinate systems for the first camera, i.e. it projects points given in the rectified first camera coordinate system into the rectified first camera's image.P2
- Output 3x4 projection matrix in the new (rectified) coordinate systems for the second camera, i.e. it projects points given in the rectified first camera coordinate system into the rectified second camera's image.Q
- Output \(4 \times 4\) disparity-to-depth mapping matrix (see REF: reprojectImageTo3D).flags
- Operation flags that may be zero or REF: STEREO_ZERO_DISPARITY . If the flag is set, the function makes the principal points of each camera have the same pixel coordinates in the rectified views. And if the flag is not set, the function may still shift the images in the horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the useful image area.alpha
- Free scaling parameter. If it is -1 or absent, the function performs the default scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified images are zoomed and shifted so that only valid pixels are visible (no black areas after rectification). alpha=1 means that the rectified image is decimated and shifted so that all the pixels from the original images from the cameras are retained in the rectified images (no source image pixels are lost). Any intermediate value yields an intermediate result between those two extreme cases. #initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0) is passed (default), it is set to the original imageSize . Setting it to a larger value can help you preserve details in the original image, especially when there is a big radial distortion. are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller (see the picture below). are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller (see the picture below). The function computes the rotation matrices for each camera that (virtually) make both camera image planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies the dense stereo correspondence problem. The function takes the matrices computed by #stereoCalibrate as input. As output, it provides two rotation matrices and also two projection matrices in the new coordinates. The function distinguishes the following two cases:- Horizontal stereo: the first and the second camera views are shifted relative to each other mainly along the x-axis (with possible small vertical shift). In the rectified images, the corresponding epipolar lines in the left and right cameras are horizontal and have the same y-coordinate. P1 and P2 look like:
- Vertical stereo: the first and the second camera views are shifted relative to each other mainly in the vertical direction (and probably a bit in the horizontal direction too). The epipolar lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
-
stereoRectify
public static void stereoRectify(Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags)
Computes rectification transforms for each head of a calibrated stereo camera.- Parameters:
cameraMatrix1
- First camera intrinsic matrix.distCoeffs1
- First camera distortion parameters.cameraMatrix2
- Second camera intrinsic matrix.distCoeffs2
- Second camera distortion parameters.imageSize
- Size of the image used for stereo calibration.R
- Rotation matrix from the coordinate system of the first camera to the second camera, see REF: stereoCalibrate.T
- Translation vector from the coordinate system of the first camera to the second camera, see REF: stereoCalibrate.R1
- Output 3x3 rectification transform (rotation matrix) for the first camera. This matrix brings points given in the unrectified first camera's coordinate system to points in the rectified first camera's coordinate system. In more technical terms, it performs a change of basis from the unrectified first camera's coordinate system to the rectified first camera's coordinate system.R2
- Output 3x3 rectification transform (rotation matrix) for the second camera. This matrix brings points given in the unrectified second camera's coordinate system to points in the rectified second camera's coordinate system. In more technical terms, it performs a change of basis from the unrectified second camera's coordinate system to the rectified second camera's coordinate system.P1
- Output 3x4 projection matrix in the new (rectified) coordinate systems for the first camera, i.e. it projects points given in the rectified first camera coordinate system into the rectified first camera's image.P2
- Output 3x4 projection matrix in the new (rectified) coordinate systems for the second camera, i.e. it projects points given in the rectified first camera coordinate system into the rectified second camera's image.Q
- Output \(4 \times 4\) disparity-to-depth mapping matrix (see REF: reprojectImageTo3D).flags
- Operation flags that may be zero or REF: STEREO_ZERO_DISPARITY . If the flag is set, the function makes the principal points of each camera have the same pixel coordinates in the rectified views. And if the flag is not set, the function may still shift the images in the horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the useful image area. scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified images are zoomed and shifted so that only valid pixels are visible (no black areas after rectification). alpha=1 means that the rectified image is decimated and shifted so that all the pixels from the original images from the cameras are retained in the rectified images (no source image pixels are lost). Any intermediate value yields an intermediate result between those two extreme cases. #initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0) is passed (default), it is set to the original imageSize . Setting it to a larger value can help you preserve details in the original image, especially when there is a big radial distortion. are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller (see the picture below). are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller (see the picture below). The function computes the rotation matrices for each camera that (virtually) make both camera image planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies the dense stereo correspondence problem. The function takes the matrices computed by #stereoCalibrate as input. As output, it provides two rotation matrices and also two projection matrices in the new coordinates. The function distinguishes the following two cases:- Horizontal stereo: the first and the second camera views are shifted relative to each other mainly along the x-axis (with possible small vertical shift). In the rectified images, the corresponding epipolar lines in the left and right cameras are horizontal and have the same y-coordinate. P1 and P2 look like:
- Vertical stereo: the first and the second camera views are shifted relative to each other mainly in the vertical direction (and probably a bit in the horizontal direction too). The epipolar lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
-
stereoRectify
public static void stereoRectify(Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q)
Computes rectification transforms for each head of a calibrated stereo camera.- Parameters:
cameraMatrix1
- First camera intrinsic matrix.distCoeffs1
- First camera distortion parameters.cameraMatrix2
- Second camera intrinsic matrix.distCoeffs2
- Second camera distortion parameters.imageSize
- Size of the image used for stereo calibration.R
- Rotation matrix from the coordinate system of the first camera to the second camera, see REF: stereoCalibrate.T
- Translation vector from the coordinate system of the first camera to the second camera, see REF: stereoCalibrate.R1
- Output 3x3 rectification transform (rotation matrix) for the first camera. This matrix brings points given in the unrectified first camera's coordinate system to points in the rectified first camera's coordinate system. In more technical terms, it performs a change of basis from the unrectified first camera's coordinate system to the rectified first camera's coordinate system.R2
- Output 3x3 rectification transform (rotation matrix) for the second camera. This matrix brings points given in the unrectified second camera's coordinate system to points in the rectified second camera's coordinate system. In more technical terms, it performs a change of basis from the unrectified second camera's coordinate system to the rectified second camera's coordinate system.P1
- Output 3x4 projection matrix in the new (rectified) coordinate systems for the first camera, i.e. it projects points given in the rectified first camera coordinate system into the rectified first camera's image.P2
- Output 3x4 projection matrix in the new (rectified) coordinate systems for the second camera, i.e. it projects points given in the rectified first camera coordinate system into the rectified second camera's image.Q
- Output \(4 \times 4\) disparity-to-depth mapping matrix (see REF: reprojectImageTo3D). the function makes the principal points of each camera have the same pixel coordinates in the rectified views. And if the flag is not set, the function may still shift the images in the horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the useful image area. scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified images are zoomed and shifted so that only valid pixels are visible (no black areas after rectification). alpha=1 means that the rectified image is decimated and shifted so that all the pixels from the original images from the cameras are retained in the rectified images (no source image pixels are lost). Any intermediate value yields an intermediate result between those two extreme cases. #initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0) is passed (default), it is set to the original imageSize . Setting it to a larger value can help you preserve details in the original image, especially when there is a big radial distortion. are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller (see the picture below). are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller (see the picture below). The function computes the rotation matrices for each camera that (virtually) make both camera image planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies the dense stereo correspondence problem. The function takes the matrices computed by #stereoCalibrate as input. As output, it provides two rotation matrices and also two projection matrices in the new coordinates. The function distinguishes the following two cases:- Horizontal stereo: the first and the second camera views are shifted relative to each other mainly along the x-axis (with possible small vertical shift). In the rectified images, the corresponding epipolar lines in the left and right cameras are horizontal and have the same y-coordinate. P1 and P2 look like:
- Vertical stereo: the first and the second camera views are shifted relative to each other mainly in the vertical direction (and probably a bit in the horizontal direction too). The epipolar lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
-
stereoRectifyUncalibrated
public static boolean stereoRectifyUncalibrated(Mat points1, Mat points2, Mat F, Size imgSize, Mat H1, Mat H2, double threshold)
Computes a rectification transform for an uncalibrated stereo camera.- Parameters:
points1
- Array of feature points in the first image.points2
- The corresponding points in the second image. The same formats as in #findFundamentalMat are supported.F
- Input fundamental matrix. It can be computed from the same set of point pairs using #findFundamentalMat .imgSize
- Size of the image.H1
- Output rectification homography matrix for the first image.H2
- Output rectification homography matrix for the second image.threshold
- Optional threshold used to filter out the outliers. If the parameter is greater than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points for which \(|\texttt{points2[i]}^T \cdot \texttt{F} \cdot \texttt{points1[i]}|>\texttt{threshold}\) ) are rejected prior to computing the homographies. Otherwise, all the points are considered inliers. The function computes the rectification transformations without knowing intrinsic parameters of the cameras and their relative position in the space, which explains the suffix "uncalibrated". Another related difference from #stereoRectify is that the function outputs not the rectification transformations in the object (3D) space, but the planar perspective transformations encoded by the homography matrices H1 and H2 . The function implements the algorithm CITE: Hartley99 . Note: While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion, it would be better to correct it before computing the fundamental matrix and calling this function. For example, distortion coefficients can be estimated for each head of stereo camera separately by using #calibrateCamera . Then, the images can be corrected using #undistort , or just the point coordinates can be corrected with #undistortPoints .- Returns:
- automatically generated
-
stereoRectifyUncalibrated
public static boolean stereoRectifyUncalibrated(Mat points1, Mat points2, Mat F, Size imgSize, Mat H1, Mat H2)
Computes a rectification transform for an uncalibrated stereo camera.- Parameters:
points1
- Array of feature points in the first image.points2
- The corresponding points in the second image. The same formats as in #findFundamentalMat are supported.F
- Input fundamental matrix. It can be computed from the same set of point pairs using #findFundamentalMat .imgSize
- Size of the image.H1
- Output rectification homography matrix for the first image.H2
- Output rectification homography matrix for the second image. than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points for which \(|\texttt{points2[i]}^T \cdot \texttt{F} \cdot \texttt{points1[i]}|>\texttt{threshold}\) ) are rejected prior to computing the homographies. Otherwise, all the points are considered inliers. The function computes the rectification transformations without knowing intrinsic parameters of the cameras and their relative position in the space, which explains the suffix "uncalibrated". Another related difference from #stereoRectify is that the function outputs not the rectification transformations in the object (3D) space, but the planar perspective transformations encoded by the homography matrices H1 and H2 . The function implements the algorithm CITE: Hartley99 . Note: While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion, it would be better to correct it before computing the fundamental matrix and calling this function. For example, distortion coefficients can be estimated for each head of stereo camera separately by using #calibrateCamera . Then, the images can be corrected using #undistort , or just the point coordinates can be corrected with #undistortPoints .- Returns:
- automatically generated
-
fisheye_stereoRectify
public static void fisheye_stereoRectify(Mat K1, Mat D1, Mat K2, Mat D2, Size imageSize, Mat R, Mat tvec, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags, Size newImageSize, double balance, double fov_scale)
Stereo rectification for fisheye camera model- Parameters:
K1
- First camera intrinsic matrix.D1
- First camera distortion parameters.K2
- Second camera intrinsic matrix.D2
- Second camera distortion parameters.imageSize
- Size of the image used for stereo calibration.R
- Rotation matrix between the coordinate systems of the first and the second cameras.tvec
- Translation vector between coordinate systems of the cameras.R1
- Output 3x3 rectification transform (rotation matrix) for the first camera.R2
- Output 3x3 rectification transform (rotation matrix) for the second camera.P1
- Output 3x4 projection matrix in the new (rectified) coordinate systems for the first camera.P2
- Output 3x4 projection matrix in the new (rectified) coordinate systems for the second camera.Q
- Output \(4 \times 4\) disparity-to-depth mapping matrix (see reprojectImageTo3D ).flags
- Operation flags that may be zero or REF: cv::CALIB_ZERO_DISPARITY . If the flag is set, the function makes the principal points of each camera have the same pixel coordinates in the rectified views. And if the flag is not set, the function may still shift the images in the horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the useful image area.newImageSize
- New image resolution after rectification. The same size should be passed to #initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0) is passed (default), it is set to the original imageSize . Setting it to larger value can help you preserve details in the original image, especially when there is a big radial distortion.balance
- Sets the new focal length in range between the min focal length and the max focal length. Balance is in range of [0, 1].fov_scale
- Divisor for new focal length.
-
fisheye_stereoRectify
public static void fisheye_stereoRectify(Mat K1, Mat D1, Mat K2, Mat D2, Size imageSize, Mat R, Mat tvec, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags, Size newImageSize, double balance)
Stereo rectification for fisheye camera model- Parameters:
K1
- First camera intrinsic matrix.D1
- First camera distortion parameters.K2
- Second camera intrinsic matrix.D2
- Second camera distortion parameters.imageSize
- Size of the image used for stereo calibration.R
- Rotation matrix between the coordinate systems of the first and the second cameras.tvec
- Translation vector between coordinate systems of the cameras.R1
- Output 3x3 rectification transform (rotation matrix) for the first camera.R2
- Output 3x3 rectification transform (rotation matrix) for the second camera.P1
- Output 3x4 projection matrix in the new (rectified) coordinate systems for the first camera.P2
- Output 3x4 projection matrix in the new (rectified) coordinate systems for the second camera.Q
- Output \(4 \times 4\) disparity-to-depth mapping matrix (see reprojectImageTo3D ).flags
- Operation flags that may be zero or REF: cv::CALIB_ZERO_DISPARITY . If the flag is set, the function makes the principal points of each camera have the same pixel coordinates in the rectified views. And if the flag is not set, the function may still shift the images in the horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the useful image area.newImageSize
- New image resolution after rectification. The same size should be passed to #initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0) is passed (default), it is set to the original imageSize . Setting it to larger value can help you preserve details in the original image, especially when there is a big radial distortion.balance
- Sets the new focal length in range between the min focal length and the max focal length. Balance is in range of [0, 1].
-
fisheye_stereoRectify
public static void fisheye_stereoRectify(Mat K1, Mat D1, Mat K2, Mat D2, Size imageSize, Mat R, Mat tvec, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags, Size newImageSize)
Stereo rectification for fisheye camera model- Parameters:
K1
- First camera intrinsic matrix.D1
- First camera distortion parameters.K2
- Second camera intrinsic matrix.D2
- Second camera distortion parameters.imageSize
- Size of the image used for stereo calibration.R
- Rotation matrix between the coordinate systems of the first and the second cameras.tvec
- Translation vector between coordinate systems of the cameras.R1
- Output 3x3 rectification transform (rotation matrix) for the first camera.R2
- Output 3x3 rectification transform (rotation matrix) for the second camera.P1
- Output 3x4 projection matrix in the new (rectified) coordinate systems for the first camera.P2
- Output 3x4 projection matrix in the new (rectified) coordinate systems for the second camera.Q
- Output \(4 \times 4\) disparity-to-depth mapping matrix (see reprojectImageTo3D ).flags
- Operation flags that may be zero or REF: cv::CALIB_ZERO_DISPARITY . If the flag is set, the function makes the principal points of each camera have the same pixel coordinates in the rectified views. And if the flag is not set, the function may still shift the images in the horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the useful image area.newImageSize
- New image resolution after rectification. The same size should be passed to #initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0) is passed (default), it is set to the original imageSize . Setting it to larger value can help you preserve details in the original image, especially when there is a big radial distortion. length. Balance is in range of [0, 1].
-
fisheye_stereoRectify
public static void fisheye_stereoRectify(Mat K1, Mat D1, Mat K2, Mat D2, Size imageSize, Mat R, Mat tvec, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags)
Stereo rectification for fisheye camera model- Parameters:
K1
- First camera intrinsic matrix.D1
- First camera distortion parameters.K2
- Second camera intrinsic matrix.D2
- Second camera distortion parameters.imageSize
- Size of the image used for stereo calibration.R
- Rotation matrix between the coordinate systems of the first and the second cameras.tvec
- Translation vector between coordinate systems of the cameras.R1
- Output 3x3 rectification transform (rotation matrix) for the first camera.R2
- Output 3x3 rectification transform (rotation matrix) for the second camera.P1
- Output 3x4 projection matrix in the new (rectified) coordinate systems for the first camera.P2
- Output 3x4 projection matrix in the new (rectified) coordinate systems for the second camera.Q
- Output \(4 \times 4\) disparity-to-depth mapping matrix (see reprojectImageTo3D ).flags
- Operation flags that may be zero or REF: cv::CALIB_ZERO_DISPARITY . If the flag is set, the function makes the principal points of each camera have the same pixel coordinates in the rectified views. And if the flag is not set, the function may still shift the images in the horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the useful image area. #initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0) is passed (default), it is set to the original imageSize . Setting it to larger value can help you preserve details in the original image, especially when there is a big radial distortion. length. Balance is in range of [0, 1].
-
filterSpeckles
public static void filterSpeckles(Mat img, double newVal, int maxSpeckleSize, double maxDiff, Mat buf)
Filters off small noise blobs (speckles) in the disparity map- Parameters:
img
- The input 16-bit signed disparity imagenewVal
- The disparity value used to paint-off the specklesmaxSpeckleSize
- The maximum speckle size to consider it a speckle. Larger blobs are not affected by the algorithmmaxDiff
- Maximum difference between neighbor disparity pixels to put them into the same blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point disparity map, where disparity values are multiplied by 16, this scale factor should be taken into account when specifying this parameter value.buf
- The optional temporary buffer to avoid memory allocation within the function.
-
filterSpeckles
public static void filterSpeckles(Mat img, double newVal, int maxSpeckleSize, double maxDiff)
Filters off small noise blobs (speckles) in the disparity map- Parameters:
img
- The input 16-bit signed disparity imagenewVal
- The disparity value used to paint-off the specklesmaxSpeckleSize
- The maximum speckle size to consider it a speckle. Larger blobs are not affected by the algorithmmaxDiff
- Maximum difference between neighbor disparity pixels to put them into the same blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point disparity map, where disparity values are multiplied by 16, this scale factor should be taken into account when specifying this parameter value.
-
getValidDisparityROI
public static Rect getValidDisparityROI(Rect roi1, Rect roi2, int minDisparity, int numberOfDisparities, int blockSize)
-
validateDisparity
public static void validateDisparity(Mat disparity, Mat cost, int minDisparity, int numberOfDisparities, int disp12MaxDisp)
-
validateDisparity
public static void validateDisparity(Mat disparity, Mat cost, int minDisparity, int numberOfDisparities)
-
reprojectImageTo3D
public static void reprojectImageTo3D(Mat disparity, Mat _3dImage, Mat Q, boolean handleMissingValues, int ddepth)
Reprojects a disparity image to 3D space.- Parameters:
disparity
- Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit floating-point disparity image. The values of 8-bit / 16-bit signed formats are assumed to have no fractional bits. If the disparity is 16-bit signed format, as computed by REF: StereoBM or REF: StereoSGBM and maybe other algorithms, it should be divided by 16 (and scaled to float) before being used here._3dImage
- Output 3-channel floating-point image of the same size as disparity. Each element of _3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity map. If one uses Q obtained by REF: stereoRectify, then the returned points are represented in the first camera's rectified coordinate system.Q
- \(4 \times 4\) perspective transformation matrix that can be obtained with REF: stereoRectify.handleMissingValues
- Indicates, whether the function should handle missing values (i.e. points where the disparity was not computed). If handleMissingValues=true, then pixels with the minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed to 3D points with a very large Z value (currently set to 10000).ddepth
- The optional output array depth. If it is -1, the output image will have CV_32F depth. ddepth can also be set to CV_16S, CV_32S or CV_32F. The function transforms a single-channel disparity map to a 3-channel image representing a 3D surface. That is, for each pixel (x,y) and the corresponding disparity d=disparity(x,y) , it computes: \(\begin{bmatrix} X \\ Y \\ Z \\ W \end{bmatrix} = Q \begin{bmatrix} x \\ y \\ \texttt{disparity} (x,y) \\ 1 \end{bmatrix}.\) SEE: To reproject a sparse set of points {(x,y,d),...} to 3D space, use perspectiveTransform.
-
reprojectImageTo3D
public static void reprojectImageTo3D(Mat disparity, Mat _3dImage, Mat Q, boolean handleMissingValues)
Reprojects a disparity image to 3D space.- Parameters:
disparity
- Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit floating-point disparity image. The values of 8-bit / 16-bit signed formats are assumed to have no fractional bits. If the disparity is 16-bit signed format, as computed by REF: StereoBM or REF: StereoSGBM and maybe other algorithms, it should be divided by 16 (and scaled to float) before being used here._3dImage
- Output 3-channel floating-point image of the same size as disparity. Each element of _3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity map. If one uses Q obtained by REF: stereoRectify, then the returned points are represented in the first camera's rectified coordinate system.Q
- \(4 \times 4\) perspective transformation matrix that can be obtained with REF: stereoRectify.handleMissingValues
- Indicates, whether the function should handle missing values (i.e. points where the disparity was not computed). If handleMissingValues=true, then pixels with the minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed to 3D points with a very large Z value (currently set to 10000). depth. ddepth can also be set to CV_16S, CV_32S or CV_32F. The function transforms a single-channel disparity map to a 3-channel image representing a 3D surface. That is, for each pixel (x,y) and the corresponding disparity d=disparity(x,y) , it computes: \(\begin{bmatrix} X \\ Y \\ Z \\ W \end{bmatrix} = Q \begin{bmatrix} x \\ y \\ \texttt{disparity} (x,y) \\ 1 \end{bmatrix}.\) SEE: To reproject a sparse set of points {(x,y,d),...} to 3D space, use perspectiveTransform.
-
reprojectImageTo3D
public static void reprojectImageTo3D(Mat disparity, Mat _3dImage, Mat Q)
Reprojects a disparity image to 3D space.- Parameters:
disparity
- Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit floating-point disparity image. The values of 8-bit / 16-bit signed formats are assumed to have no fractional bits. If the disparity is 16-bit signed format, as computed by REF: StereoBM or REF: StereoSGBM and maybe other algorithms, it should be divided by 16 (and scaled to float) before being used here._3dImage
- Output 3-channel floating-point image of the same size as disparity. Each element of _3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity map. If one uses Q obtained by REF: stereoRectify, then the returned points are represented in the first camera's rectified coordinate system.Q
- \(4 \times 4\) perspective transformation matrix that can be obtained with REF: stereoRectify. points where the disparity was not computed). If handleMissingValues=true, then pixels with the minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed to 3D points with a very large Z value (currently set to 10000). depth. ddepth can also be set to CV_16S, CV_32S or CV_32F. The function transforms a single-channel disparity map to a 3-channel image representing a 3D surface. That is, for each pixel (x,y) and the corresponding disparity d=disparity(x,y) , it computes: \(\begin{bmatrix} X \\ Y \\ Z \\ W \end{bmatrix} = Q \begin{bmatrix} x \\ y \\ \texttt{disparity} (x,y) \\ 1 \end{bmatrix}.\) SEE: To reproject a sparse set of points {(x,y,d),...} to 3D space, use perspectiveTransform.
-
-