In this tutorial you will learn how to use opencv_dnn module for image classification by using GoogLeNet trained network from ONNX model zoo.
We will demonstrate results of this example on the following picture.
#include <fstream>
#include <sstream>
#include <iostream>
#include "common.hpp"
using namespace std;
using namespace dnn;
const string about =
"Use this script to run a classification model on a camera stream, video, image or image list (i.e. .xml or .yaml containing image lists)\n\n"
"Firstly, download required models using `download_models.py` (if not already done). Set environment variable OPENCV_DOWNLOAD_CACHE_DIR to specify where models should be downloaded. Also, point OPENCV_SAMPLES_DATA_PATH to opencv/samples/data.\n"
"To run:\n"
"\t ./example_dnn_classification model_name --input=path/to/your/input/image/or/video (don't give --input flag if want to use device camera)\n"
"Sample command:\n"
"\t ./example_dnn_classification resnet --input=$OPENCV_SAMPLES_DATA_PATH/baboon.jpg\n"
"\t ./example_dnn_classification squeezenet\n"
"Model path can also be specified using --model argument. "
"Use imagelist_creator to create the xml or yaml list\n";
const string param_keys =
"{ help h | | Print help message. }"
"{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }"
"{ zoo | ../dnn/models.yml | An optional path to file with preprocessing parameters }"
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
"{ imglist | | Pass this flag if image list (i.e. .xml or .yaml) file is passed}"
"{ crop | false | Preprocess input image by center cropping.}"
"{ model | | Path to the model file.}";
const string backend_keys = format(
"{ backend | default | Choose one of computation backends: "
"default: automatically (by default), "
"openvino: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"opencv: OpenCV implementation, "
"vkcom: VKCOM, "
"cuda: CUDA, "
"webnn: WebNN }");
const string target_keys = format(
"{ target | cpu | Choose one of target computation devices: "
"cpu: CPU target (by default), "
"opencl: OpenCL, "
"opencl_fp16: OpenCL fp16 (half-float precision), "
"vpu: VPU, "
"vulkan: Vulkan, "
"cuda: CUDA, "
"cuda_fp16: CUDA fp16 (half-float preprocess) }");
string keys = param_keys + backend_keys + target_keys;
vector<string> classes;
static bool readStringList( const string& filename, vector<string>& l )
{
l.resize(0);
if( !fs.isOpened() )
return false;
size_t dir_pos = filename.rfind('/');
if (dir_pos == string::npos)
dir_pos = filename.rfind('\\');
if( n.
type() != FileNode::SEQ )
return false;
for( ; it != it_end; ++it )
{
string fname = (string)*it;
if (dir_pos != string::npos)
{
string fpath = samples::findFile(filename.substr(0, dir_pos + 1) + fname, false);
if (fpath.empty())
{
fpath = samples::findFile(fname);
}
fname = fpath;
}
else
{
fname = samples::findFile(fname);
}
l.push_back(fname);
}
return true;
}
int main(
int argc,
char** argv)
{
if (!parser.has("@alias") || parser.has("help"))
{
cout << about << endl;
parser.printMessage();
return -1;
}
const string modelName = parser.get<
String>(
"@alias");
keys += genPreprocArguments(modelName, zooFile);
parser.about(about);
if (argc == 1 || parser.has("help"))
{
parser.printMessage();
return 0;
}
float scale = parser.get<
float>(
"scale");
bool swapRB = parser.get<bool>("rgb");
bool crop = parser.get<
bool>(
"crop");
int inpWidth = parser.get<int>("width");
int inpHeight = parser.get<int>("height");
String model = findModel(parser.get<
String>(
"model"), sha1);
bool isImgList = parser.has("imglist");
string labels_filename = parser.get<
String>(
"labels");
string file =
findFile(labels_filename);
ifstream ifs(file.c_str());
if (!ifs.is_open()){
cout<<"File " << file << " not found";
exit(1);
}
while (getline(ifs, line))
{
classes.push_back(line);
}
if (!parser.check())
{
parser.printErrors();
return 1;
}
if (backend != "default" || target != "cpu"){
}
net.setPreferableBackend(getBackendID(backend));
net.setPreferableTarget(getTargetID(target));
static const std::string kWinName = "Deep learning image classification in OpenCV";
vector<string> imageList;
size_t currentImageIndex = 0;
if (parser.has("input")) {
if (isImgList) {
bool check = readStringList(samples::findFile(input), imageList);
if (imageList.empty() || !check) {
cout << "Error: No images found or the provided file is not a valid .yaml or .xml file." << endl;
return -1;
}
} else {
cout << "Failed to open the input." << endl;
return -1;
}
}
} else {
}
for(;;)
{
if (!imageList.empty()) {
if (currentImageIndex >= imageList.size()) {
break;
}
frame =
imread(imageList[currentImageIndex++]);
cout<<"Cannot open file"<<endl;
continue;
}
} else {
cap >> frame;
}
{
break;
}
if (std.val[0] != 0.0 && std.val[1] != 0.0 && std.val[2] != 0.0)
{
}
net.setInput(blob);
Mat prob = net.forward();
double t1;
prob = net.forward();
int N = (int)prob.
total(), K = std::min(5, N);
std::vector<std::pair<float, int> > prob_vec;
for (int i = 0; i < N; i++) {
prob_vec.push_back(std::make_pair(-prob.
at<
float>(i), i));
}
std::sort(prob_vec.begin(), prob_vec.end());
string label =
format(
"Inference time: %.1f ms", t1);
Mat subframe = frame(
Rect(0, 0, std::min(1000, frame.
cols), std::min(300, frame.
rows)));
subframe *= 0.3f;
for (int i = 0; i < K; i++) {
int classId = prob_vec[i].second;
float confidence = -prob_vec[i].first;
label =
format(
"%d. %s: %.2f", i+1, (classes.empty() ?
format(
"Class #%d", classId).c_str() :
classes[classId].c_str()), confidence);
}
int key =
waitKey(isImgList ? 1000 : 100);
if (key == ' ')
if (key == 'q' || key == 27)
return 0;
}
return 0;
}
Designed for command line parsing.
Definition utility.hpp:890
used to iterate through sequences and mappings.
Definition persistence.hpp:595
File Storage Node class.
Definition persistence.hpp:441
FileNodeIterator begin() const
returns iterator pointing to the first node element
FileNodeIterator end() const
returns iterator pointing to the element following the last node element
int type() const
Returns type of the node.
XML/YAML/JSON file storage class that encapsulates all the information necessary for writing or readi...
Definition persistence.hpp:261
Wrapper on top of a truetype/opentype/etc font, i.e. Freetype's FT_Face.
Definition imgproc.hpp:4996
n-dimensional dense array class
Definition mat.hpp:950
_Tp & at(int i0=0)
Returns a reference to the specified array element.
int cols
Definition mat.hpp:2424
size_t total() const
Returns the total number of array elements.
bool empty() const
Returns true if the array has no elements.
int rows
the number of rows and columns or (-1, -1) when the matrix has more than 2 dimensions
Definition mat.hpp:2424
Template class for 2D rectangles.
Definition types.hpp:447
Template class for specifying the size of an image or rectangle.
Definition types.hpp:338
a Class to measure passing time.
Definition utility.hpp:326
void start()
starts counting ticks.
Definition utility.hpp:335
void stop()
stops counting ticks.
Definition utility.hpp:341
void reset()
resets internal values.
Definition utility.hpp:430
double getTimeMilli() const
returns passed time in milliseconds.
Definition utility.hpp:365
Class for video capturing from video files, image sequences or cameras.
Definition videoio.hpp:727
virtual bool open(const String &filename, int apiPreference=CAP_ANY)
Opens a video file or a capturing device or an IP video stream for video capturing.
virtual bool isOpened() const
Returns true if video capturing has been initialized already.
AscendMat crop(InputArray src, const Rect &rect, AscendStream &stream=AscendStream::Null())
crop a 2D array. The function crops the matrix by given cv::Rect. Output matrix must be of the same d...
Scalar mean(InputArray src, InputArray mask=noArray())
Calculates an average (mean) of array elements.
void divide(InputArray src1, InputArray src2, OutputArray dst, double scale=1, int dtype=-1)
Performs per-element division of two arrays or a scalar by an array.
std::string String
Definition cvstd.hpp:151
cv::String findFile(const cv::String &relative_path, bool required=true, bool silentMode=false)
Try to find requested data file.
String format(const char *fmt,...)
Returns a text string formatted using the printf-like expression.
#define CV_Assert(expr)
Checks a condition at runtime and throws exception if it fails.
Definition exception.hpp:198
Mat blobFromImage(InputArray image, double scalefactor=1.0, const Size &size=Size(), const Scalar &mean=Scalar(), bool swapRB=false, bool crop=false, int ddepth=CV_32F)
Creates 4-dimensional blob from image. Optionally resizes and crops image from center,...
Net readNetFromONNX(CV_WRAP_FILE_PATH const String &onnxFile, int engine=ENGINE_AUTO)
Reads a network model ONNX.
EngineType
Definition dnn.hpp:1020
@ ENGINE_CLASSIC
Force use the old dnn engine similar to 4.x branch.
Definition dnn.hpp:1021
@ ENGINE_AUTO
Try to use the new engine and then fall back to the classic version.
Definition dnn.hpp:1023
void imshow(const String &winname, InputArray mat)
Displays an image in the specified window.
int waitKey(int delay=0)
Waits for a pressed key.
void namedWindow(const String &winname, int flags=WINDOW_AUTOSIZE)
Creates a window.
CV_EXPORTS_W Mat imread(const String &filename, int flags=IMREAD_COLOR_BGR)
Loads an image from a file.
void putText(InputOutputArray img, const String &text, Point org, int fontFace, double fontScale, Scalar color, int thickness=1, int lineType=LINE_8, bool bottomLeftOrigin=false)
Draws a text string.
void line(InputOutputArray img, Point pt1, Point pt2, const Scalar &color, int thickness=1, int lineType=LINE_8, int shift=0)
Draws a line segment connecting two points.
int main(int argc, char *argv[])
Definition highgui_qt.cpp:3
void scale(cv::Mat &mat, const cv::Mat &range, const T min, const T max)
Definition quality_utils.hpp:90