An example using the standard Kalman filter in Python.
1
2"""
3 Tracking of rotating point.
4 Point moves in a circle and is characterized by a 1D state.
5 state_k+1 = state_k + speed + process_noise N(0, 1e-5)
6 The speed is constant.
7 Both state and measurements vectors are 1D (a point angle),
8 Measurement is the real state + gaussian noise N(0, 1e-1).
9 The real and the measured points are connected with red line segment,
10 the real and the estimated points are connected with yellow line segment,
11 the real and the corrected estimated points are connected with green line segment.
12 (if Kalman filter works correctly,
13 the yellow segment should be shorter than the red one and
14 the green segment should be shorter than the yellow one).
15 Pressing any key (except ESC) will reset the tracking.
16 Pressing ESC will stop the program.
17"""
18
19import numpy as np
20import cv2 as cv
21
22from math import cos, sin, sqrt, pi
23
25 img_height = 500
26 img_width = 500
28
29 code = -1
30 num_circle_steps = 12
31 while True:
32 img = np.zeros((img_height, img_width, 3), np.uint8)
33 state = np.array([[0.0],[(2 * pi) / num_circle_steps]])
34 kalman.transitionMatrix = np.array([[1., 1.], [0., 1.]])
35 kalman.measurementMatrix = 1. * np.eye(1, 2)
36 kalman.processNoiseCov = 1e-5 * np.eye(2)
37 kalman.measurementNoiseCov = 1e-1 * np.ones((1, 1))
38 kalman.errorCovPost = 1. * np.eye(2, 2)
39 kalman.statePost = 0.1 * np.random.randn(2, 1)
40
41 while True:
42 def calc_point(angle):
43 return (np.around(img_width / 2. + img_width / 3.0 * cos(angle), 0).astype(int),
44 np.around(img_height / 2. - img_width / 3.0 * sin(angle), 1).astype(int))
45 img = img * 1e-3
46 state_angle = state[0, 0]
47 state_pt = calc_point(state_angle)
48
49
50
51
52 prediction = kalman.predict()
53
54 predict_pt = calc_point(prediction[0, 0])
55
56 measurement = kalman.measurementNoiseCov * np.random.randn(1, 1)
57 measurement = np.dot(kalman.measurementMatrix, state) + measurement
58
59 measurement_angle = measurement[0, 0]
60 measurement_pt = calc_point(measurement_angle)
61
62
63
64 kalman.correct(measurement)
65 improved_pt = calc_point(kalman.statePost[0, 0])
66
67
68 cv.drawMarker(img, measurement_pt, (0, 0, 255), cv.MARKER_SQUARE, 5, 2)
69 cv.drawMarker(img, predict_pt, (0, 255, 255), cv.MARKER_SQUARE, 5, 2)
70 cv.drawMarker(img, improved_pt, (0, 255, 0), cv.MARKER_SQUARE, 5, 2)
71 cv.drawMarker(img, state_pt, (255, 255, 255), cv.MARKER_STAR, 10, 1)
72
73 cv.drawMarker(img, calc_point(np.dot(kalman.transitionMatrix, kalman.statePost)[0, 0]),
74 (255, 255, 0), cv.MARKER_SQUARE, 12, 1)
75
76 cv.line(img, state_pt, measurement_pt, (0, 0, 255), 1, cv.LINE_AA, 0)
77 cv.line(img, state_pt, predict_pt, (0, 255, 255), 1, cv.LINE_AA, 0)
78 cv.line(img, state_pt, improved_pt, (0, 255, 0), 1, cv.LINE_AA, 0)
79
80
81 process_noise = sqrt(kalman.processNoiseCov[0, 0]) * np.random.randn(2, 1)
82 state = np.dot(kalman.transitionMatrix, state) + process_noise
83
86 if code != -1:
87 break
88
89 if code in [27, ord('q'), ord('Q')]:
90 break
91
92 print('Done')
93
94
95if __name__ == '__main__':
96 print(__doc__)
Kalman filter class.
Definition tracking.hpp:375
void imshow(const String &winname, InputArray mat)
Displays an image in the specified window.
int waitKey(int delay=0)
Waits for a pressed key.
void destroyAllWindows()
Destroys all of the HighGUI windows.
void drawMarker(InputOutputArray img, Point position, const Scalar &color, int markerType=MARKER_CROSS, int markerSize=20, int thickness=1, int line_type=8)
Draws a marker on a predefined position in an image.
void line(InputOutputArray img, Point pt1, Point pt2, const Scalar &color, int thickness=1, int lineType=LINE_8, int shift=0)
Draws a line segment connecting two points.
int main(int argc, char *argv[])
Definition highgui_qt.cpp:3