OpenCV  5.0.0alpha
Open Source Computer Vision
Loading...
Searching...
No Matches
Non-Photorealistic Rendering

Detailed Description

Useful links:

http://www.inf.ufrgs.br/~eslgastal/DomainTransform

https://www.learnopencv.com/non-photorealistic-rendering-using-opencv-python-c/

Enumerations

enum  {
  cv::RECURS_FILTER = 1 ,
  cv::NORMCONV_FILTER = 2
}
 Edge preserving filters. More...
 

Functions

void cv::detailEnhance (InputArray src, OutputArray dst, float sigma_s=10, float sigma_r=0.15f)
 This filter enhances the details of a particular image.
 
void cv::edgePreservingFilter (InputArray src, OutputArray dst, int flags=1, float sigma_s=60, float sigma_r=0.4f)
 Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing filters are used in many different applications [101] .
 
void cv::pencilSketch (InputArray src, OutputArray dst1, OutputArray dst2, float sigma_s=60, float sigma_r=0.07f, float shade_factor=0.02f)
 Pencil-like non-photorealistic line drawing.
 
void cv::stylization (InputArray src, OutputArray dst, float sigma_s=60, float sigma_r=0.45f)
 Stylization aims to produce digital imagery with a wide variety of effects not focused on photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions of low contrast while preserving, or enhancing, high-contrast features.
 

Enumeration Type Documentation

◆ anonymous enum

anonymous enum

#include <opencv2/photo.hpp>

Edge preserving filters.

Enumerator
RECURS_FILTER 
Python: cv.RECURS_FILTER

Recursive Filtering.

NORMCONV_FILTER 
Python: cv.NORMCONV_FILTER

Normalized Convolution Filtering.

Function Documentation

◆ detailEnhance()

void cv::detailEnhance ( InputArray src,
OutputArray dst,
float sigma_s = 10,
float sigma_r = 0.15f )
Python:
cv.detailEnhance(src[, dst[, sigma_s[, sigma_r]]]) -> dst

#include <opencv2/photo.hpp>

This filter enhances the details of a particular image.

Parameters
srcInput 8-bit 3-channel image.
dstOutput image with the same size and type as src.
sigma_sRange between 0 to 200.
sigma_rRange between 0 to 1.

◆ edgePreservingFilter()

void cv::edgePreservingFilter ( InputArray src,
OutputArray dst,
int flags = 1,
float sigma_s = 60,
float sigma_r = 0.4f )
Python:
cv.edgePreservingFilter(src[, dst[, flags[, sigma_s[, sigma_r]]]]) -> dst

#include <opencv2/photo.hpp>

Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing filters are used in many different applications [101] .

Parameters
srcInput 8-bit 3-channel image.
dstOutput 8-bit 3-channel image.
flagsEdge preserving filters: cv::RECURS_FILTER or cv::NORMCONV_FILTER
sigma_sRange between 0 to 200.
sigma_rRange between 0 to 1.

◆ pencilSketch()

void cv::pencilSketch ( InputArray src,
OutputArray dst1,
OutputArray dst2,
float sigma_s = 60,
float sigma_r = 0.07f,
float shade_factor = 0.02f )
Python:
cv.pencilSketch(src[, dst1[, dst2[, sigma_s[, sigma_r[, shade_factor]]]]]) -> dst1, dst2

#include <opencv2/photo.hpp>

Pencil-like non-photorealistic line drawing.

Parameters
srcInput 8-bit 3-channel image.
dst1Output 8-bit 1-channel image.
dst2Output image with the same size and type as src.
sigma_sRange between 0 to 200.
sigma_rRange between 0 to 1.
shade_factorRange between 0 to 0.1.

◆ stylization()

void cv::stylization ( InputArray src,
OutputArray dst,
float sigma_s = 60,
float sigma_r = 0.45f )
Python:
cv.stylization(src[, dst[, sigma_s[, sigma_r]]]) -> dst

#include <opencv2/photo.hpp>

Stylization aims to produce digital imagery with a wide variety of effects not focused on photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions of low contrast while preserving, or enhancing, high-contrast features.

Parameters
srcInput 8-bit 3-channel image.
dstOutput image with the same size and type as src.
sigma_sRange between 0 to 200.
sigma_rRange between 0 to 1.