An example using the standard Kalman filter in Python.
    1
    2"""
    3   Tracking of rotating point.
    4   Point moves in a circle and is characterized by a 1D state.
    5   state_k+1 = state_k + speed + process_noise N(0, 1e-5)
    6   The speed is constant.
    7   Both state and measurements vectors are 1D (a point angle),
    8   Measurement is the real state + gaussian noise N(0, 1e-1).
    9   The real and the measured points are connected with red line segment,
   10   the real and the estimated points are connected with yellow line segment,
   11   the real and the corrected estimated points are connected with green line segment.
   12   (if Kalman filter works correctly,
   13    the yellow segment should be shorter than the red one and
   14    the green segment should be shorter than the yellow one).
   15   Pressing any key (except ESC) will reset the tracking.
   16   Pressing ESC will stop the program.
   17"""
   18 
   19import numpy as np
   20import cv2 as cv
   21 
   22from math import cos, sin, sqrt, pi
   23 
   25    img_height = 500
   26    img_width = 500
   28 
   29    code = -1
   30    num_circle_steps = 12
   31    while True:
   32        img = np.zeros((img_height, img_width, 3), np.uint8)
   33        state = np.array([[0.0],[(2 * pi) / num_circle_steps]])   
   34        kalman.transitionMatrix = np.array([[1., 1.], [0., 1.]])  
   35        kalman.measurementMatrix = 1. * np.eye(1, 2)              
   36        kalman.processNoiseCov = 1e-5 * np.eye(2)                 
   37        kalman.measurementNoiseCov = 1e-1 * np.ones((1, 1))       
   38        kalman.errorCovPost = 1. * np.eye(2, 2)                   
   39        kalman.statePost = 0.1 * np.random.randn(2, 1)            
   40 
   41        while True:
   42            def calc_point(angle):
   43                return (np.around(img_width / 2. + img_width / 3.0 * cos(angle), 0).astype(int),
   44                        np.around(img_height / 2. - img_width / 3.0 * sin(angle), 1).astype(int))
   45            img = img * 1e-3
   46            state_angle = state[0, 0]
   47            state_pt = calc_point(state_angle)
   48            
   49            
   50            
   51            
   52            prediction = kalman.predict()
   53 
   54            predict_pt = calc_point(prediction[0, 0])  
   55            
   56            measurement = kalman.measurementNoiseCov * np.random.randn(1, 1)
   57            measurement = np.dot(kalman.measurementMatrix, state) + measurement
   58 
   59            measurement_angle = measurement[0, 0]
   60            measurement_pt = calc_point(measurement_angle)
   61 
   62            
   63            
   64            kalman.correct(measurement)
   65            improved_pt = calc_point(kalman.statePost[0, 0])
   66 
   67            
   68            cv.drawMarker(img, measurement_pt, (0, 0, 255), cv.MARKER_SQUARE, 5, 2)
 
   69            cv.drawMarker(img, predict_pt, (0, 255, 255), cv.MARKER_SQUARE, 5, 2)
 
   70            cv.drawMarker(img, improved_pt, (0, 255, 0), cv.MARKER_SQUARE, 5, 2)
 
   71            cv.drawMarker(img, state_pt, (255, 255, 255), cv.MARKER_STAR, 10, 1)
 
   72            
   73            cv.drawMarker(img, calc_point(np.dot(kalman.transitionMatrix, kalman.statePost)[0, 0]),
 
   74                          (255, 255, 0), cv.MARKER_SQUARE, 12, 1)
   75 
   76            cv.line(img, state_pt, measurement_pt, (0, 0, 255), 1, cv.LINE_AA, 0)  
 
   77            cv.line(img, state_pt, predict_pt, (0, 255, 255), 1, cv.LINE_AA, 0)  
 
   78            cv.line(img, state_pt, improved_pt, (0, 255, 0), 1, cv.LINE_AA, 0)  
 
   79 
   80            
   81            process_noise = sqrt(kalman.processNoiseCov[0, 0]) * np.random.randn(2, 1)
   82            state = np.dot(kalman.transitionMatrix, state) + process_noise  
   83 
   86            if code != -1:
   87                break
   88 
   89        if code in [27, ord('q'), ord('Q')]:
   90            break
   91 
   92    print('Done')
   93 
   94 
   95if __name__ == '__main__':
   96    print(__doc__)
Kalman filter class.
Definition tracking.hpp:375
 
void imshow(const String &winname, InputArray mat)
Displays an image in the specified window.
 
int waitKey(int delay=0)
Waits for a pressed key.
 
void destroyAllWindows()
Destroys all of the HighGUI windows.
 
void drawMarker(InputOutputArray img, Point position, const Scalar &color, int markerType=MARKER_CROSS, int markerSize=20, int thickness=1, int line_type=8)
Draws a marker on a predefined position in an image.
 
void line(InputOutputArray img, Point pt1, Point pt2, const Scalar &color, int thickness=1, int lineType=LINE_8, int shift=0)
Draws a line segment connecting two points.
 
int main(int argc, char *argv[])
Definition highgui_qt.cpp:3