![]() |
OpenCV
5.0.0alpha
Open Source Computer Vision
|
Classes | |
| struct | cv::Accumulator< T > |
| struct | cv::Accumulator< char > |
| struct | cv::Accumulator< short > |
| struct | cv::Accumulator< unsigned char > |
| struct | cv::Accumulator< unsigned short > |
| class | cv::AffineFeature |
| Class for implementing the wrapper which makes detectors and extractors to be affine invariant, described as ASIFT in [313] . More... | |
| class | cv::FastFeatureDetector |
| Wrapping class for feature detection using the FAST method. More... | |
| class | cv::Feature2D |
| Abstract base class for 2D image feature detectors and descriptor extractors. More... | |
| class | cv::GFTTDetector |
| Wrapping class for feature detection using the goodFeaturesToTrack function. : More... | |
| class | cv::KeyPointsFilter |
| A class filters a vector of keypoints. More... | |
| struct | cv::L1< T > |
| struct | cv::L2< T > |
| class | cv::MSER |
| Maximally stable extremal region extractor. More... | |
| class | cv::ORB |
| Class implementing the ORB (oriented BRIEF) keypoint detector and descriptor extractor. More... | |
| class | cv::SIFT |
| Class for extracting keypoints and computing descriptors using the Scale Invariant Feature Transform (SIFT) algorithm by D. Lowe [174] . More... | |
| class | cv::SimpleBlobDetector |
| Class for extracting blobs from an image. : More... | |
| struct | cv::SL2< T > |
Typedefs | |
| typedef AffineFeature | cv::AffineDescriptorExtractor |
| typedef AffineFeature | cv::AffineFeatureDetector |
| typedef Feature2D | cv::DescriptorExtractor |
| typedef Feature2D | cv::FeatureDetector |
| typedef SIFT | cv::SiftDescriptorExtractor |
| typedef SIFT | cv::SiftFeatureDetector |
Functions | |
| void | cv::computeRecallPrecisionCurve (const std::vector< std::vector< DMatch > > &matches1to2, const std::vector< std::vector< uchar > > &correctMatches1to2Mask, std::vector< Point2f > &recallPrecisionCurve) |
| void | cv::evaluateFeatureDetector (const Mat &img1, const Mat &img2, const Mat &H1to2, std::vector< KeyPoint > *keypoints1, std::vector< KeyPoint > *keypoints2, float &repeatability, int &correspCount, const Ptr< FeatureDetector > &fdetector=Ptr< FeatureDetector >()) |
| void | cv::FAST (InputArray image, std::vector< KeyPoint > &keypoints, int threshold, bool nonmaxSuppression=true, FastFeatureDetector::DetectorType type=FastFeatureDetector::TYPE_9_16) |
| Detects corners using the FAST algorithm. | |
| int | cv::getNearestPoint (const std::vector< Point2f > &recallPrecisionCurve, float l_precision) |
| float | cv::getRecall (const std::vector< Point2f > &recallPrecisionCurve, float l_precision) |
#include <opencv2/features.hpp>
#include <opencv2/features.hpp>
| typedef Feature2D cv::DescriptorExtractor |
#include <opencv2/features.hpp>
Extractors of keypoint descriptors in OpenCV have wrappers with a common interface that enables you to easily switch between different algorithms solving the same problem. This section is devoted to computing descriptors represented as vectors in a multidimensional space. All objects that implement the vector descriptor extractors inherit the DescriptorExtractor interface.
| typedef Feature2D cv::FeatureDetector |
#include <opencv2/features.hpp>
Feature detectors in OpenCV have wrappers with a common interface that enables you to easily switch between different algorithms solving the same problem. All objects that implement keypoint detectors inherit the FeatureDetector interface.
| typedef SIFT cv::SiftDescriptorExtractor |
#include <opencv2/features.hpp>
| typedef SIFT cv::SiftFeatureDetector |
#include <opencv2/features.hpp>
| void cv::computeRecallPrecisionCurve | ( | const std::vector< std::vector< DMatch > > & | matches1to2, |
| const std::vector< std::vector< uchar > > & | correctMatches1to2Mask, | ||
| std::vector< Point2f > & | recallPrecisionCurve ) |
#include <opencv2/features.hpp>
| void cv::evaluateFeatureDetector | ( | const Mat & | img1, |
| const Mat & | img2, | ||
| const Mat & | H1to2, | ||
| std::vector< KeyPoint > * | keypoints1, | ||
| std::vector< KeyPoint > * | keypoints2, | ||
| float & | repeatability, | ||
| int & | correspCount, | ||
| const Ptr< FeatureDetector > & | fdetector = Ptr< FeatureDetector >() ) |
#include <opencv2/features.hpp>
| void cv::FAST | ( | InputArray | image, |
| std::vector< KeyPoint > & | keypoints, | ||
| int | threshold, | ||
| bool | nonmaxSuppression = true, | ||
| FastFeatureDetector::DetectorType | type = FastFeatureDetector::TYPE_9_16 ) |
#include <opencv2/features.hpp>
Detects corners using the FAST algorithm.
| image | grayscale image where keypoints (corners) are detected. |
| keypoints | keypoints detected on the image. |
| threshold | threshold on difference between intensity of the central pixel and pixels of a circle around this pixel. |
| nonmaxSuppression | if true, non-maximum suppression is applied to detected keypoints (corners). |
| type | one of the three neighborhoods as defined in the paper: FastFeatureDetector::TYPE_9_16, FastFeatureDetector::TYPE_7_12, FastFeatureDetector::TYPE_5_8 |
Detects corners using the FAST algorithm by [229] .
Check the corresponding tutorial for more details.
| int cv::getNearestPoint | ( | const std::vector< Point2f > & | recallPrecisionCurve, |
| float | l_precision ) |
#include <opencv2/features.hpp>
| float cv::getRecall | ( | const std::vector< Point2f > & | recallPrecisionCurve, |
| float | l_precision ) |
#include <opencv2/features.hpp>
1.12.0