OpenCV 4.12.0-dev
Open Source Computer Vision
Loading...
Searching...
No Matches
Motion Analysis

Detailed Description

Classes

class  cv::BackgroundSubtractor
 Base class for background/foreground segmentation. : More...
 
class  cv::BackgroundSubtractorKNN
 K-nearest neighbours - based Background/Foreground Segmentation Algorithm. More...
 
class  cv::BackgroundSubtractorMOG2
 Gaussian Mixture-based Background/Foreground Segmentation Algorithm. More...
 

Functions

Ptr< BackgroundSubtractorKNNcv::createBackgroundSubtractorKNN (int history=500, double dist2Threshold=400.0, bool detectShadows=true)
 Creates KNN Background Subtractor.
 
Ptr< BackgroundSubtractorMOG2cv::createBackgroundSubtractorMOG2 (int history=500, double varThreshold=16, bool detectShadows=true)
 Creates MOG2 Background Subtractor.
 

Function Documentation

◆ createBackgroundSubtractorKNN()

Ptr< BackgroundSubtractorKNN > cv::createBackgroundSubtractorKNN ( int history = 500,
double dist2Threshold = 400.0,
bool detectShadows = true )
Python:
cv.createBackgroundSubtractorKNN([, history[, dist2Threshold[, detectShadows]]]) -> retval

#include <opencv2/video/background_segm.hpp>

Creates KNN Background Subtractor.

Parameters
historyLength of the history.
dist2ThresholdThreshold on the squared distance between the pixel and the sample to decide whether a pixel is close to that sample. This parameter does not affect the background update.
detectShadowsIf true, the algorithm will detect shadows and mark them. It decreases the speed a bit, so if you do not need this feature, set the parameter to false.
Here is the call graph for this function:

◆ createBackgroundSubtractorMOG2()

Ptr< BackgroundSubtractorMOG2 > cv::createBackgroundSubtractorMOG2 ( int history = 500,
double varThreshold = 16,
bool detectShadows = true )
Python:
cv.createBackgroundSubtractorMOG2([, history[, varThreshold[, detectShadows]]]) -> retval

#include <opencv2/video/background_segm.hpp>

Creates MOG2 Background Subtractor.

Parameters
historyLength of the history.
varThresholdThreshold on the squared Mahalanobis distance between the pixel and the model to decide whether a pixel is well described by the background model. This parameter does not affect the background update.
detectShadowsIf true, the algorithm will detect shadows and mark them. It decreases the speed a bit, so if you do not need this feature, set the parameter to false.