|
class | cv::dnn::AbsLayer |
|
class | cv::dnn::AccumLayer |
|
class | cv::dnn::AcoshLayer |
|
class | cv::dnn::AcosLayer |
|
class | cv::dnn::ActivationLayer |
|
class | cv::dnn::ActivationLayerInt8 |
|
class | cv::dnn::ArgLayer |
| ArgMax/ArgMin layer. More...
|
|
class | cv::dnn::AsinhLayer |
|
class | cv::dnn::AsinLayer |
|
class | cv::dnn::AtanhLayer |
|
class | cv::dnn::AtanLayer |
|
class | cv::dnn::AttentionLayer |
|
class | cv::dnn::BaseConvolutionLayer |
|
class | cv::dnn::BatchNormLayer |
|
class | cv::dnn::BatchNormLayerInt8 |
|
class | cv::dnn::BlankLayer |
|
class | cv::dnn::BNLLLayer |
|
class | cv::dnn::CeilLayer |
|
class | cv::dnn::CeluLayer |
|
class | cv::dnn::ChannelsPReLULayer |
|
class | cv::dnn::CompareLayer |
|
class | cv::dnn::ConcatLayer |
|
class | cv::dnn::ConstLayer |
|
class | cv::dnn::ConvolutionLayer |
|
class | cv::dnn::ConvolutionLayerInt8 |
|
class | cv::dnn::CorrelationLayer |
|
class | cv::dnn::CoshLayer |
|
class | cv::dnn::CosLayer |
|
class | cv::dnn::CropAndResizeLayer |
|
class | cv::dnn::CropLayer |
|
class | cv::dnn::CumSumLayer |
|
class | cv::dnn::DataAugmentationLayer |
|
class | cv::dnn::DeconvolutionLayer |
|
class | cv::dnn::DepthToSpaceLayer |
|
class | cv::dnn::DequantizeLayer |
|
class | cv::dnn::DetectionOutputLayer |
| Detection output layer. More...
|
|
class | cv::dnn::EinsumLayer |
| This function performs array summation based on the Einstein summation convention. The function allows for concise expressions of various mathematical operations using subscripts. More...
|
|
class | cv::dnn::EltwiseLayer |
| Element wise operation on inputs. More...
|
|
class | cv::dnn::EltwiseLayerInt8 |
|
class | cv::dnn::ELULayer |
|
class | cv::dnn::ErfLayer |
|
class | cv::dnn::ExpandLayer |
|
class | cv::dnn::ExpLayer |
|
class | cv::dnn::FlattenLayer |
|
class | cv::dnn::FloorLayer |
|
class | cv::dnn::FlowWarpLayer |
|
class | cv::dnn::GatherElementsLayer |
| GatherElements layer GatherElements takes two inputs data and indices of the same rank r >= 1 and an optional attribute axis and works such that: output[i][j][k] = data[index[i][j][k]][j][k] if axis = 0 and r = 3 output[i][j][k] = data[i][index[i][j][k]][k] if axis = 1 and r = 3 output[i][j][k] = data[i][j][index[i][j][k]] if axis = 2 and r = 3. More...
|
|
class | cv::dnn::GatherLayer |
| Gather layer. More...
|
|
class | cv::dnn::GeluApproximationLayer |
|
class | cv::dnn::GeluLayer |
|
class | cv::dnn::GemmLayer |
|
class | cv::dnn::GroupNormLayer |
|
class | cv::dnn::GRULayer |
| GRU recurrent one-layer. More...
|
|
class | cv::dnn::HardSigmoidLayer |
|
class | cv::dnn::HardSwishLayer |
|
class | cv::dnn::InnerProductLayer |
|
class | cv::dnn::InnerProductLayerInt8 |
|
class | cv::dnn::InstanceNormLayer |
|
class | cv::dnn::InterpLayer |
| Bilinear resize layer from https://github.com/cdmh/deeplab-public-ver2. More...
|
|
class | cv::dnn::LayerNormLayer |
|
class | cv::dnn::LogLayer |
|
class | cv::dnn::LRNLayer |
|
class | cv::dnn::LSTMLayer |
| LSTM recurrent layer. More...
|
|
class | cv::dnn::MatMulLayer |
|
class | cv::dnn::MaxUnpoolLayer |
|
class | cv::dnn::MishLayer |
|
class | cv::dnn::MVNLayer |
|
class | cv::dnn::NaryEltwiseLayer |
|
class | cv::dnn::NormalizeBBoxLayer |
| - normalization layer. More...
|
|
class | cv::dnn::NotLayer |
|
class | cv::dnn::PaddingLayer |
| Adds extra values for specific axes. More...
|
|
class | cv::dnn::PermuteLayer |
|
class | cv::dnn::PoolingLayer |
|
class | cv::dnn::PoolingLayerInt8 |
|
class | cv::dnn::PowerLayer |
|
class | cv::dnn::PriorBoxLayer |
|
class | cv::dnn::ProposalLayer |
|
class | cv::dnn::QuantizeLayer |
|
class | cv::dnn::ReciprocalLayer |
|
class | cv::dnn::ReduceLayer |
|
class | cv::dnn::RegionLayer |
|
class | cv::dnn::ReLU6Layer |
|
class | cv::dnn::ReLULayer |
|
class | cv::dnn::ReorgLayer |
|
class | cv::dnn::RequantizeLayer |
|
class | cv::dnn::ReshapeLayer |
|
class | cv::dnn::ResizeLayer |
| Resize input 4-dimensional blob by nearest neighbor or bilinear strategy. More...
|
|
class | cv::dnn::RNNLayer |
| Classical recurrent layer. More...
|
|
class | cv::dnn::RoundLayer |
|
class | cv::dnn::ScaleLayer |
|
class | cv::dnn::ScaleLayerInt8 |
|
class | cv::dnn::ScatterLayer |
|
class | cv::dnn::ScatterNDLayer |
|
class | cv::dnn::SeluLayer |
|
class | cv::dnn::ShiftLayer |
|
class | cv::dnn::ShiftLayerInt8 |
|
class | cv::dnn::ShrinkLayer |
|
class | cv::dnn::ShuffleChannelLayer |
|
class | cv::dnn::SigmoidLayer |
|
class | cv::dnn::SignLayer |
|
class | cv::dnn::SinhLayer |
|
class | cv::dnn::SinLayer |
|
class | cv::dnn::SliceLayer |
|
class | cv::dnn::SoftmaxLayer |
|
class | cv::dnn::SoftmaxLayerInt8 |
|
class | cv::dnn::SoftplusLayer |
|
class | cv::dnn::SoftsignLayer |
|
class | cv::dnn::SpaceToDepthLayer |
|
class | cv::dnn::SplitLayer |
|
class | cv::dnn::SqrtLayer |
|
class | cv::dnn::SwishLayer |
|
class | cv::dnn::TanHLayer |
|
class | cv::dnn::TanLayer |
|
class | cv::dnn::ThresholdedReluLayer |
|
class | cv::dnn::TileLayer |
|
class | cv::dnn::TopKLayer |
|