#include <fstream>
#include <sstream>
#include <iostream>
#include "common.hpp"
std::string keys =
"{ help h | | Print help message. }"
"{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }"
"{ zoo | models.yml | An optional path to file with preprocessing parameters }"
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
"{ initial_width | 0 | Preprocess input image by initial resizing to a specific width.}"
"{ initial_height | 0 | Preprocess input image by initial resizing to a specific height.}"
"{ std | 0.0 0.0 0.0 | Preprocess input image by dividing on a standard deviation.}"
"{ crop | false | Preprocess input image by center cropping.}"
"{ framework f | | Optional name of an origin framework of the model. Detect it automatically if it does not set. }"
"{ needSoftmax | false | Use Softmax to post-process the output of the net.}"
"{ classes | | Optional path to a text file with names of classes. }"
"{ backend | 0 | Choose one of computation backends: "
"0: automatically (by default), "
"1: Halide language (http://halide-lang.org/), "
"2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"3: OpenCV implementation, "
"4: VKCOM, "
"5: CUDA, "
"6: WebNN }"
"{ target | 0 | Choose one of target computation devices: "
"0: CPU target (by default), "
"1: OpenCL, "
"2: OpenCL fp16 (half-float precision), "
"3: VPU, "
"4: Vulkan, "
"6: CUDA, "
"7: CUDA fp16 (half-float preprocess) }";
using namespace dnn;
std::vector<std::string> classes;
int main(
int argc,
char** argv)
{
const std::string modelName = parser.
get<
String>(
"@alias");
const std::string zooFile = parser.
get<
String>(
"zoo");
keys += genPreprocArguments(modelName, zooFile);
parser.
about(
"Use this script to run classification deep learning networks using OpenCV.");
if (argc == 1 || parser.
has(
"help"))
{
return 0;
}
int rszWidth = parser.
get<
int>(
"initial_width");
int rszHeight = parser.
get<
int>(
"initial_height");
float scale = parser.
get<
float>(
"scale");
bool swapRB = parser.
get<
bool>(
"rgb");
bool crop = parser.
get<
bool>(
"crop");
int inpWidth = parser.
get<
int>(
"width");
int inpHeight = parser.
get<
int>(
"height");
int backendId = parser.
get<
int>(
"backend");
int targetId = parser.
get<
int>(
"target");
bool needSoftmax = parser.
get<
bool>(
"needSoftmax");
std::cout<<"mean: "<<mean<<std::endl;
std::cout<<
"std: "<<
std<<std::endl;
if (parser.
has(
"classes"))
{
std::string file = parser.
get<
String>(
"classes");
std::ifstream ifs(file.c_str());
if (!ifs.is_open())
CV_Error(Error::StsError,
"File " + file +
" not found");
std::string line;
while (std::getline(ifs, line))
{
classes.push_back(line);
}
}
{
return 1;
}
Net net = readNet(model, config, framework);
net.setPreferableBackend(backendId);
net.setPreferableTarget(targetId);
static const std::string kWinName = "Deep learning image classification in OpenCV";
namedWindow(kWinName, WINDOW_NORMAL);
else
while (waitKey(1) < 0)
{
cap >> frame;
if (frame.empty())
{
waitKey();
break;
}
if (rszWidth != 0 && rszHeight != 0)
{
resize(frame, frame,
Size(rszWidth, rszHeight));
}
blobFromImage(frame, blob, scale,
Size(inpWidth, inpHeight), mean, swapRB, crop);
if (
std.val[0] != 0.0 &&
std.val[1] != 0.0 &&
std.val[2] != 0.0)
{
}
net.setInput(blob);
int classId;
double confidence;
Mat prob = net.forward();
double t1;
prob = net.forward();
for(int i = 0; i < 200; i++) {
prob = net.forward();
minMaxLoc(prob.
reshape(1, 1), 0, &confidence, 0, &classIdPoint);
classId = classIdPoint.
x;
}
if (needSoftmax == true)
{
float maxProb = 0.0;
float sum = 0.0;
maxProb = *std::max_element(prob.
begin<
float>(), prob.
end<
float>());
cv::exp(prob-maxProb, softmaxProb);
sum = (float)
cv::sum(softmaxProb)[0];
softmaxProb /= sum;
minMaxLoc(softmaxProb.
reshape(1, 1), 0, &confidence, 0, &classIdPoint);
classId = classIdPoint.
x;
}
std::string label = format("Inference time of 1 round: %.2f ms", t1);
std::string label2 = format(
"Average time of 200 rounds: %.2f ms", timeRecorder.
getTimeMilli()/200);
putText(frame, label,
Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5,
Scalar(0, 255, 0));
putText(frame, label2,
Point(0, 35), FONT_HERSHEY_SIMPLEX, 0.5,
Scalar(0, 255, 0));
label = format("%s: %.4f", (classes.empty() ? format("Class #%d", classId).c_str() :
classes[classId].c_str()),
confidence);
putText(frame, label,
Point(0, 55), FONT_HERSHEY_SIMPLEX, 0.5,
Scalar(0, 255, 0));
imshow(kWinName, frame);
}
return 0;
}
Designed for command line parsing.
Definition utility.hpp:820
T get(const String &name, bool space_delete=true) const
Access arguments by name.
Definition utility.hpp:886
void about(const String &message)
Set the about message.
void printErrors() const
Print list of errors occurred.
void printMessage() const
Print help message.
bool has(const String &name) const
Check if field was provided in the command line.
bool check() const
Check for parsing errors.
n-dimensional dense array class
Definition mat.hpp:812
Mat reshape(int cn, int rows=0) const
Changes the shape and/or the number of channels of a 2D matrix without copying the data.
MatIterator_< _Tp > end()
Returns the matrix iterator and sets it to the after-last matrix element.
MatIterator_< _Tp > begin()
Returns the matrix iterator and sets it to the first matrix element.
_Tp x
x coordinate of the point
Definition types.hpp:201
Template class for specifying the size of an image or rectangle.
Definition types.hpp:335
a Class to measure passing time.
Definition utility.hpp:295
void start()
starts counting ticks.
Definition utility.hpp:304
void stop()
stops counting ticks.
Definition utility.hpp:310
void reset()
resets internal values.
Definition utility.hpp:374
double getTimeMilli() const
returns passed time in milliseconds.
Definition utility.hpp:333
Class for video capturing from video files, image sequences or cameras.
Definition videoio.hpp:731
virtual bool open(const String &filename, int apiPreference=CAP_ANY)
Opens a video file or a capturing device or an IP video stream for video capturing.
Scalar sum(InputArray src)
Calculates the sum of array elements.
std::string String
Definition cvstd.hpp:151
#define CV_Error(code, msg)
Call the error handler.
Definition base.hpp:320
#define CV_Assert(expr)
Checks a condition at runtime and throws exception if it fails.
Definition base.hpp:342
int main(int argc, char *argv[])
Definition highgui_qt.cpp:3
"black box" representation of the file storage associated with a file on disk.
Definition core.hpp:102