#include <iostream>
#include <time.h>
vector< float > get_svm_detector(
const Ptr< SVM >& svm );
void convert_to_ml(
const std::vector< Mat > & train_samples,
Mat& trainData );
void load_images(
const String & dirname, vector< Mat > & img_lst,
bool showImages );
void sample_neg(
const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst,
const Size & size );
void computeHOGs(
const Size wsize,
const vector< Mat > & img_lst, vector< Mat > & gradient_lst,
bool use_flip );
void test_trained_detector(
String obj_det_filename,
String test_dir,
String videofilename );
vector< float > get_svm_detector(
const Ptr< SVM >& svm )
{
Mat sv = svm->getSupportVectors();
const int sv_total = sv.
rows;
double rho = svm->getDecisionFunction( 0, alpha, svidx );
vector< float > hog_detector( sv.
cols + 1 );
memcpy( &hog_detector[0], sv.
ptr(), sv.
cols*
sizeof( hog_detector[0] ) );
hog_detector[sv.
cols] = (float)-rho;
return hog_detector;
}
void convert_to_ml(
const vector< Mat > & train_samples,
Mat& trainData )
{
const int rows = (int)train_samples.size();
const int cols = (int)
std::max( train_samples[0].cols, train_samples[0].rows );
for( size_t i = 0 ; i < train_samples.size(); ++i )
{
CV_Assert( train_samples[i].cols == 1 || train_samples[i].rows == 1 );
if( train_samples[i].cols == 1 )
{
tmp.copyTo( trainData.
row( (
int)i ) );
}
else if( train_samples[i].rows == 1 )
{
train_samples[i].copyTo( trainData.
row( (
int)i ) );
}
}
}
void load_images(
const String & dirname, vector< Mat > & img_lst,
bool showImages =
false )
{
vector< String > files;
for ( size_t i = 0; i < files.size(); ++i )
{
{
cout << files[i] << " is invalid!" << endl;
continue;
}
if ( showImages )
{
}
img_lst.push_back( img );
}
}
void sample_neg(
const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst,
const Size & size )
{
const int size_x = box.
width;
const int size_y = box.
height;
srand( (unsigned int)time( NULL ) );
for ( size_t i = 0; i < full_neg_lst.size(); i++ )
if ( full_neg_lst[i].cols > box.
width && full_neg_lst[i].rows > box.
height )
{
box.
x =
rand() % ( full_neg_lst[i].cols - size_x );
box.
y =
rand() % ( full_neg_lst[i].rows - size_y );
Mat roi = full_neg_lst[i]( box );
neg_lst.push_back( roi.
clone() );
}
}
void computeHOGs(
const Size wsize,
const vector< Mat > & img_lst, vector< Mat > & gradient_lst,
bool use_flip )
{
vector< float > descriptors;
for( size_t i = 0 ; i < img_lst.size(); i++ )
{
if ( img_lst[i].cols >= wsize.
width && img_lst[i].rows >= wsize.
height )
{
( img_lst[i].rows - wsize.
height ) / 2,
gradient_lst.push_back(
Mat( descriptors ).clone() );
if ( use_flip )
{
gradient_lst.push_back(
Mat( descriptors ).clone() );
}
}
}
}
void test_trained_detector(
String obj_det_filename,
String test_dir,
String videofilename )
{
cout << "Testing trained detector..." << endl;
hog.
load( obj_det_filename );
vector< String > files;
int delay = 0;
if ( videofilename != "" )
{
if ( videofilename.size() == 1 && isdigit( videofilename[0] ) )
cap.
open( videofilename[0] -
'0' );
else
cap.
open( videofilename );
}
obj_det_filename = "testing " + obj_det_filename;
for( size_t i=0;; i++ )
{
{
cap >> img;
delay = 1;
}
else if( i < files.size() )
{
}
{
return;
}
vector< Rect > detections;
vector< double > foundWeights;
for ( size_t j = 0; j < detections.size(); j++ )
{
Scalar color =
Scalar( 0, foundWeights[j] * foundWeights[j] * 200, 0 );
}
imshow( obj_det_filename, img );
{
return;
}
}
}
int main( int argc, char** argv )
{
const char* keys =
{
"{help h| | show help message}"
"{pd | | path of directory contains positive images}"
"{nd | | path of directory contains negative images}"
"{td | | path of directory contains test images}"
"{tv | | test video file name}"
"{dw | | width of the detector}"
"{dh | | height of the detector}"
"{f |false| indicates if the program will generate and use mirrored samples or not}"
"{d |false| train twice}"
"{t |false| test a trained detector}"
"{v |false| visualize training steps}"
"{fn |my_detector.yml| file name of trained SVM}"
};
if ( parser.has( "help" ) )
{
parser.printMessage();
exit( 0 );
}
int detector_width = parser.get< int >( "dw" );
int detector_height = parser.get< int >( "dh" );
bool test_detector = parser.get< bool >( "t" );
bool train_twice = parser.get< bool >( "d" );
bool visualization = parser.get< bool >( "v" );
bool flip_samples = parser.get< bool >( "f" );
if ( test_detector )
{
test_trained_detector( obj_det_filename, test_dir, videofilename );
exit( 0 );
}
if( pos_dir.empty() || neg_dir.empty() )
{
parser.printMessage();
cout << "Wrong number of parameters.\n\n"
<< "Example command line:\n" << argv[0] << " -dw=64 -dh=128 -pd=/INRIAPerson/96X160H96/Train/pos -nd=/INRIAPerson/neg -td=/INRIAPerson/Test/pos -fn=HOGpedestrian64x128.xml -d\n"
<< "\nExample command line for testing trained detector:\n" << argv[0] << " -t -fn=HOGpedestrian64x128.xml -td=/INRIAPerson/Test/pos";
exit( 1 );
}
vector< Mat > pos_lst, full_neg_lst, neg_lst, gradient_lst;
vector< int > labels;
clog << "Positive images are being loaded..." ;
load_images( pos_dir, pos_lst, visualization );
if ( pos_lst.size() > 0 )
{
clog << "...[done]" << endl;
}
else
{
clog << "no image in " << pos_dir <<endl;
return 1;
}
Size pos_image_size = pos_lst[0].size();
if ( detector_width && detector_height )
{
pos_image_size =
Size( detector_width, detector_height );
}
else
{
for ( size_t i = 0; i < pos_lst.size(); ++i )
{
if( pos_lst[i].size() != pos_image_size )
{
cout << "All positive images should be same size!" << endl;
exit( 1 );
}
}
pos_image_size = pos_image_size / 8 * 8;
}
clog << "Negative images are being loaded...";
load_images( neg_dir, full_neg_lst, false );
sample_neg( full_neg_lst, neg_lst, pos_image_size );
clog << "...[done]" << endl;
clog << "Histogram of Gradients are being calculated for positive images...";
computeHOGs( pos_image_size, pos_lst, gradient_lst, flip_samples );
size_t positive_count = gradient_lst.size();
labels.assign( positive_count, +1 );
clog << "...[done] ( positive count : " << positive_count << " )" << endl;
clog << "Histogram of Gradients are being calculated for negative images...";
computeHOGs( pos_image_size, neg_lst, gradient_lst, flip_samples );
size_t negative_count = gradient_lst.size() - positive_count;
labels.insert( labels.end(), negative_count, -1 );
clog << "...[done] ( negative count : " << negative_count << " )" << endl;
convert_to_ml( gradient_lst, train_data );
clog << "Training SVM...";
svm->setCoef0( 0.0 );
svm->setDegree( 3 );
svm->setGamma( 0 );
svm->setNu( 0.5 );
svm->setP( 0.1 );
svm->setC( 0.01 );
clog << "...[done]" << endl;
if ( train_twice )
{
clog << "Testing trained detector on negative images. This may take a few minutes...";
vector< Rect > detections;
vector< double > foundWeights;
for ( size_t i = 0; i < full_neg_lst.size(); i++ )
{
if ( full_neg_lst[i].cols >= pos_image_size.
width && full_neg_lst[i].rows >= pos_image_size.
height )
else
detections.clear();
for ( size_t j = 0; j < detections.size(); j++ )
{
Mat detection = full_neg_lst[i]( detections[j] ).clone();
neg_lst.push_back( detection );
}
if ( visualization )
{
for ( size_t j = 0; j < detections.size(); j++ )
{
}
imshow(
"testing trained detector on negative images", full_neg_lst[i] );
}
}
clog << "...[done]" << endl;
gradient_lst.clear();
clog << "Histogram of Gradients are being calculated for positive images...";
computeHOGs( pos_image_size, pos_lst, gradient_lst, flip_samples );
positive_count = gradient_lst.size();
clog << "...[done] ( positive count : " << positive_count << " )" << endl;
clog << "Histogram of Gradients are being calculated for negative images...";
computeHOGs( pos_image_size, neg_lst, gradient_lst, flip_samples );
negative_count = gradient_lst.size() - positive_count;
clog << "...[done] ( negative count : " << negative_count << " )" << endl;
labels.clear();
labels.assign(positive_count, +1);
labels.insert(labels.end(), negative_count, -1);
clog << "Training SVM again...";
convert_to_ml( gradient_lst, train_data );
clog << "...[done]" << endl;
}
hog.
save( obj_det_filename );
test_trained_detector( obj_det_filename, test_dir, videofilename );
return 0;
}