This tutorial code's is shown lines below. 
#include <stdio.h>
#include <iostream>
void readme();
int main( int argc, char** argv )
{
  if( argc != 3 )
  { readme(); return -1; }
  if( !img_object.
data || !img_scene.
data )
   { std::cout<< " --(!) Error reading images " << std::endl; return -1; }
  
  int minHessian = 400;
  std::vector<KeyPoint> keypoints_object, keypoints_scene;
  Mat descriptors_object, descriptors_scene;
   
  std::vector< DMatch > matches;
  matcher.
match( descriptors_object, descriptors_scene, matches );
  double max_dist = 0; double min_dist = 100;
  
  for( 
int i = 0; i < descriptors_object.
rows; i++ )
   { 
double dist = matches[
i].distance;
    if( dist < min_dist ) min_dist = dist;
    if( dist > max_dist ) max_dist = dist;
  }
  printf("-- Max dist : %f \n", max_dist );
  printf("-- Min dist : %f \n", min_dist );
  
  std::vector< DMatch > good_matches;
  for( 
int i = 0; i < descriptors_object.
rows; i++ )
   { if( matches[i].distance <= 3*min_dist )
     { good_matches.push_back( matches[i]); }
  }
  drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
   
  std::vector<Point2f> obj;
  std::vector<Point2f> scene;
  for( size_t i = 0; i < good_matches.size(); i++ )
  {
    
    obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
    scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
  }
  
  std::vector<Point2f> obj_corners(4);
  std::vector<Point2f> scene_corners(4);
  
  
  imshow( 
"Good Matches & Object detection", img_matches );
   return 0;
  }
  
  void readme()
  { std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }