OpenCV  3.0.0
Open Source Computer Vision
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Groups Pages
pca.cpp

An example using PCA for dimensionality reduction while maintaining an amount of variance

/*
* pca.cpp
*
* Author:
* Kevin Hughes <kevinhughes27[at]gmail[dot]com>
*
* Special Thanks to:
* Philipp Wagner <bytefish[at]gmx[dot]de>
*
* This program demonstrates how to use OpenCV PCA with a
* specified amount of variance to retain. The effect
* is illustrated further by using a trackbar to
* change the value for retained varaince.
*
* The program takes as input a text file with each line
* begin the full path to an image. PCA will be performed
* on this list of images. The author recommends using
* the first 15 faces of the AT&T face data set:
* http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
*
* so for example your input text file would look like this:
*
* <path_to_at&t_faces>/orl_faces/s1/1.pgm
* <path_to_at&t_faces>/orl_faces/s2/1.pgm
* <path_to_at&t_faces>/orl_faces/s3/1.pgm
* <path_to_at&t_faces>/orl_faces/s4/1.pgm
* <path_to_at&t_faces>/orl_faces/s5/1.pgm
* <path_to_at&t_faces>/orl_faces/s6/1.pgm
* <path_to_at&t_faces>/orl_faces/s7/1.pgm
* <path_to_at&t_faces>/orl_faces/s8/1.pgm
* <path_to_at&t_faces>/orl_faces/s9/1.pgm
* <path_to_at&t_faces>/orl_faces/s10/1.pgm
* <path_to_at&t_faces>/orl_faces/s11/1.pgm
* <path_to_at&t_faces>/orl_faces/s12/1.pgm
* <path_to_at&t_faces>/orl_faces/s13/1.pgm
* <path_to_at&t_faces>/orl_faces/s14/1.pgm
* <path_to_at&t_faces>/orl_faces/s15/1.pgm
*
*/
#include <iostream>
#include <fstream>
#include <sstream>
using namespace cv;
using namespace std;
// Functions
static void read_imgList(const string& filename, vector<Mat>& images) {
std::ifstream file(filename.c_str(), ifstream::in);
if (!file) {
string error_message = "No valid input file was given, please check the given filename.";
CV_Error(Error::StsBadArg, error_message);
}
string line;
while (getline(file, line)) {
images.push_back(imread(line, 0));
}
}
static Mat formatImagesForPCA(const vector<Mat> &data)
{
Mat dst(static_cast<int>(data.size()), data[0].rows*data[0].cols, CV_32F);
for(unsigned int i = 0; i < data.size(); i++)
{
Mat image_row = data[i].clone().reshape(1,1);
Mat row_i = dst.row(i);
image_row.convertTo(row_i,CV_32F);
}
return dst;
}
static Mat toGrayscale(InputArray _src) {
Mat src = _src.getMat();
// only allow one channel
if(src.channels() != 1) {
CV_Error(Error::StsBadArg, "Only Matrices with one channel are supported");
}
// create and return normalized image
Mat dst;
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1);
return dst;
}
struct params
{
Mat data;
int ch;
int rows;
PCA pca;
string winName;
};
static void onTrackbar(int pos, void* ptr)
{
cout << "Retained Variance = " << pos << "% ";
cout << "re-calculating PCA..." << std::flush;
double var = pos / 100.0;
struct params *p = (struct params *)ptr;
p->pca = PCA(p->data, cv::Mat(), PCA::DATA_AS_ROW, var);
Mat point = p->pca.project(p->data.row(0));
Mat reconstruction = p->pca.backProject(point);
reconstruction = reconstruction.reshape(p->ch, p->rows);
reconstruction = toGrayscale(reconstruction);
imshow(p->winName, reconstruction);
cout << "done! # of principal components: " << p->pca.eigenvectors.rows << endl;
}
// Main
int main(int argc, char** argv)
{
if (argc != 2) {
cout << "usage: " << argv[0] << " <image_list.txt>" << endl;
exit(1);
}
// Get the path to your CSV.
string imgList = string(argv[1]);
// vector to hold the images
vector<Mat> images;
// Read in the data. This can fail if not valid
try {
read_imgList(imgList, images);
} catch (cv::Exception& e) {
cerr << "Error opening file \"" << imgList << "\". Reason: " << e.msg << endl;
exit(1);
}
// Quit if there are not enough images for this demo.
if(images.size() <= 1) {
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
CV_Error(Error::StsError, error_message);
}
// Reshape and stack images into a rowMatrix
Mat data = formatImagesForPCA(images);
// perform PCA
PCA pca(data, cv::Mat(), PCA::DATA_AS_ROW, 0.95); // trackbar is initially set here, also this is a common value for retainedVariance
// Demonstration of the effect of retainedVariance on the first image
Mat point = pca.project(data.row(0)); // project into the eigenspace, thus the image becomes a "point"
Mat reconstruction = pca.backProject(point); // re-create the image from the "point"
reconstruction = reconstruction.reshape(images[0].channels(), images[0].rows); // reshape from a row vector into image shape
reconstruction = toGrayscale(reconstruction); // re-scale for displaying purposes
// init highgui window
string winName = "Reconstruction | press 'q' to quit";
// params struct to pass to the trackbar handler
params p;
p.data = data;
p.ch = images[0].channels();
p.rows = images[0].rows;
p.pca = pca;
p.winName = winName;
// create the tracbar
int pos = 95;
createTrackbar("Retained Variance (%)", winName, &pos, 100, onTrackbar, (void*)&p);
// display until user presses q
imshow(winName, reconstruction);
int key = 0;
while(key != 'q')
key = waitKey();
return 0;
}