This module contains implementations of modern structured edge detection algorithms, i.e. algorithms which somehow takes into account pixel affinities in natural images.
Class implementing edge detection algorithm from [Dollar2013]
/*! \class StructuredEdgeDetection
Prediction part of [P. Dollar and C. L. Zitnick. Structured Forests for Fast Edge Detection, 2013].
*/
class CV_EXPORTS_W StructuredEdgeDetection : public Algorithm
{
public:
/*!
* The function detects edges in src and draw them to dst
*
* \param src : source image (RGB, float, in [0;1]) to detect edges
* \param dst : destination image (grayscale, float, in [0;1])
* where edges are drawn
*/
CV_WRAP virtual void detectEdges(const Mat src, Mat dst) = 0;
};
/*!
* The only available constructor loading data from model file
*
* \param model : name of the file where the model is stored
*/
CV_EXPORTS_W Ptr<StructuredEdgeDetection> createStructuredEdgeDetection(const String &model);
The function detects edges in src and draw them to dst. The algorithm underlies this function is much more robust to texture presence, than common approaches, e.g. Sobel
Parameters: |
|
---|
The only available constructor
Parameters: |
|
---|
[Dollar2013] | P. Dollár, C. L. Zitnick, “Structured forests for fast edge detection”, IEEE International Conference on Computer Vision (ICCV), 2013, pp. 1841-1848. DOI |