Table Of Contents

Previous topic

feature2d module. 2D Features framework

Next topic

Harris corner detector

Feature Description

Goal

In this tutorial you will learn how to:

Theory

Code

This tutorial code’s is shown lines below.

#include <stdio.h>
#include <iostream>
#include "opencv2/core.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/xfeatures2d.hpp"

using namespace cv;
using namespace cv::xfeatures2d;

void readme();

/* @function main */
int main( int argc, char** argv )
{
  if( argc != 3 )
   { return -1; }

  Mat img_1 = imread( argv[1], IMREAD_GRAYSCALE );
  Mat img_2 = imread( argv[2], IMREAD_GRAYSCALE );

  if( !img_1.data || !img_2.data )
   { return -1; }

  //-- Step 1: Detect the keypoints using SURF Detector, compute the descriptors
  int minHessian = 400;

  Ptr<SURF> detector = SURF::create();
  detector->setMinHessian(minHessian);

  std::vector<KeyPoint> keypoints_1, keypoints_2;
  Mat descriptors_1, descriptors_2;

  detector->detectAndCompute( img_1, keypoints_1, descriptors_1 );
  detector->detectAndCompute( img_2, keypoints_2, descriptors_2 );

  //-- Step 2: Matching descriptor vectors with a brute force matcher
  BFMatcher matcher(NORM_L2);
  std::vector< DMatch > matches;
  matcher.match( descriptors_1, descriptors_2, matches );

  //-- Draw matches
  Mat img_matches;
  drawMatches( img_1, keypoints_1, img_2, keypoints_2, matches, img_matches );

  //-- Show detected matches
  imshow("Matches", img_matches );

  waitKey(0);

  return 0;
  }

 /* @function readme */
 void readme()
 { std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }

Explanation

Result

  1. Here is the result after applying the BruteForce matcher between the two original images:

    ../../../../_images/Feature_Description_BruteForce_Result.jpg