Table Of Contents

Previous topic

video module. Video analysis

Next topic

objdetect module. Object Detection

How to Use Background Subtraction Methods

  • Background subtraction (BS) is a common and widely used technique for generating a foreground mask (namely, a binary image containing the pixels belonging to moving objects in the scene) by using static cameras.

  • As the name suggests, BS calculates the foreground mask performing a subtraction between the current frame and a background model, containing the static part of the scene or, more in general, everything that can be considered as background given the characteristics of the observed scene.

    Background Subtraction - General Scheme
  • Background modeling consists of two main steps:

    1. Background Initialization;
    2. Background Update.

    In the first step, an initial model of the background is computed, while in the second step that model is updated in order to adapt to possible changes in the scene.

  • In this tutorial we will learn how to perform BS by using OpenCV. As input, we will use data coming from the publicly available data set Background Models Challenge (BMC) .

Goals

In this tutorial you will learn how to:

  1. Read data from videos by using VideoCapture or image sequences by using imread;
  2. Create and update the background model by using BackgroundSubtractor class;
  3. Get and show the foreground mask by using imshow;
  4. Save the output by using imwrite to quantitatively evaluate the results.

Code

In the following you can find the source code. We will let the user chose to process either a video file or a sequence of images.

  • Two different methods are used to generate two foreground masks:
    1. MOG
    2. MOG2

The results as well as the input data are shown on the screen.

//opencv
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/video/background_segm.hpp>
//C
#include <stdio.h>
//C++
#include <iostream>
#include <sstream>

using namespace cv;
using namespace std;

//global variables
Mat frame; //current frame
Mat fgMaskMOG; //fg mask generated by MOG method
Mat fgMaskMOG2; //fg mask fg mask generated by MOG2 method
Ptr<BackgroundSubtractor> pMOG; //MOG Background subtractor
Ptr<BackgroundSubtractor> pMOG2; //MOG2 Background subtractor
int keyboard;

//function declarations
void help();
void processVideo(char* videoFilename);
void processImages(char* firstFrameFilename);

void help()
{
  cout
  << "--------------------------------------------------------------------------"  << endl
  << "This program shows how to use background subtraction methods provided by "   << endl
  << " OpenCV. You can process both videos (-vid) and images (-img)."              << endl
                                                                                   << endl
  << "Usage:"                                                                      << endl
  << "./bs {-vid <video filename>|-img <image filename>}"                          << endl
  << "for example: ./bs -vid video.avi"                                            << endl
  << "or: ./bs -img /data/images/1.png"                                            << endl
  << "--------------------------------------------------------------------------"  << endl
  << endl;
}

int main(int argc, char* argv[])
{
  //print help information
  help();

  //check for the input parameter correctness
  if(argc != 3) {
    cerr <<"Incorret input list" << endl;
    cerr <<"exiting..." << endl;
    return EXIT_FAILURE;
  }

  //create GUI windows
  namedWindow("Frame");
  namedWindow("FG Mask MOG");
  namedWindow("FG Mask MOG 2");

  //create Background Subtractor objects
  pMOG = createBackgroundSubtractorMOG(); //MOG approach
  pMOG2 = createBackgroundSubtractorMOG2(); //MOG2 approach

  if(strcmp(argv[1], "-vid") == 0) {
    //input data coming from a video
    processVideo(argv[2]);
  }
  else if(strcmp(argv[1], "-img") == 0) {
    //input data coming from a sequence of images
    processImages(argv[2]);
  }
  else {
    //error in reading input parameters
    cerr <<"Please, check the input parameters." << endl;
    cerr <<"Exiting..." << endl;
    return EXIT_FAILURE;
  }
  //destroy GUI windows
  destroyAllWindows();
  return EXIT_SUCCESS;
}

void processVideo(char* videoFilename) {
  //create the capture object
  VideoCapture capture(videoFilename);
  if(!capture.isOpened()){
    //error in opening the video input
    cerr << "Unable to open video file: " << videoFilename << endl;
    exit(EXIT_FAILURE);
  }
  //read input data. ESC or 'q' for quitting
  while( (char)keyboard != 'q' && (char)keyboard != 27 ){
    //read the current frame
    if(!capture.read(frame)) {
      cerr << "Unable to read next frame." << endl;
      cerr << "Exiting..." << endl;
      exit(EXIT_FAILURE);
    }
    //update the background model
    pMOG->apply(frame, fgMaskMOG);
    pMOG2->apply(frame, fgMaskMOG2);
    //get the frame number and write it on the current frame
    stringstream ss;
    rectangle(frame, cv::Point(10, 2), cv::Point(100,20),
              cv::Scalar(255,255,255), -1);
    ss << capture.get(CAP_PROP_POS_FRAMES);
    string frameNumberString = ss.str();
    putText(frame, frameNumberString.c_str(), cv::Point(15, 15),
            FONT_HERSHEY_SIMPLEX, 0.5 , cv::Scalar(0,0,0));
    //show the current frame and the fg masks
    imshow("Frame", frame);
    imshow("FG Mask MOG", fgMaskMOG);
    imshow("FG Mask MOG 2", fgMaskMOG2);
    //get the input from the keyboard
    keyboard = waitKey( 30 );
  }
  //delete capture object
  capture.release();
}

void processImages(char* fistFrameFilename) {
  //read the first file of the sequence
  frame = imread(fistFrameFilename);
  if(!frame.data){
    //error in opening the first image
    cerr << "Unable to open first image frame: " << fistFrameFilename << endl;
    exit(EXIT_FAILURE);
  }
  //current image filename
  string fn(fistFrameFilename);
  //read input data. ESC or 'q' for quitting
  while( (char)keyboard != 'q' && (char)keyboard != 27 ){
    //update the background model
    pMOG->apply(frame, fgMaskMOG);
    pMOG2->apply(frame, fgMaskMOG2);
    //get the frame number and write it on the current frame
    size_t index = fn.find_last_of("/");
    if(index == string::npos) {
      index = fn.find_last_of("\\");
    }
    size_t index2 = fn.find_last_of(".");
    string prefix = fn.substr(0,index+1);
    string suffix = fn.substr(index2);
    string frameNumberString = fn.substr(index+1, index2-index-1);
    istringstream iss(frameNumberString);
    int frameNumber = 0;
    iss >> frameNumber;
    rectangle(frame, cv::Point(10, 2), cv::Point(100,20),
              cv::Scalar(255,255,255), -1);
    putText(frame, frameNumberString.c_str(), cv::Point(15, 15),
            FONT_HERSHEY_SIMPLEX, 0.5 , cv::Scalar(0,0,0));
    //show the current frame and the fg masks
    imshow("Frame", frame);
    imshow("FG Mask MOG", fgMaskMOG);
    imshow("FG Mask MOG 2", fgMaskMOG2);
    //get the input from the keyboard
    keyboard = waitKey( 30 );
    //search for the next image in the sequence
    ostringstream oss;
    oss << (frameNumber + 1);
    string nextFrameNumberString = oss.str();
    string nextFrameFilename = prefix + nextFrameNumberString + suffix;
    //read the next frame
    frame = imread(nextFrameFilename);
    if(!frame.data){
      //error in opening the next image in the sequence
      cerr << "Unable to open image frame: " << nextFrameFilename << endl;
      exit(EXIT_FAILURE);
    }
    //update the path of the current frame
    fn.assign(nextFrameFilename);
  }
}
  • The source file can be downloaded here.

Explanation

We discuss the main parts of the above code:

  1. First, three Mat objects are allocated to store the current frame and two foreground masks, obtained by using two different BS algorithms.

    Mat frame; //current frame
    Mat fgMaskMOG; //fg mask generated by MOG method
    Mat fgMaskMOG2; //fg mask fg mask generated by MOG2 method
    
  2. Two BackgroundSubtractor objects will be used to generate the foreground masks. In this example, default parameters are used, but it is also possible to declare specific parameters in the create function.

    Ptr<BackgroundSubtractor> pMOG; //MOG Background subtractor
    Ptr<BackgroundSubtractor> pMOG2; //MOG2 Background subtractor
    ...
    //create Background Subtractor objects
    pMOG = createBackgroundSubtractorMOG(); //MOG approach
    pMOG2 = createBackgroundSubtractorMOG2(); //MOG2 approach
    
  3. The command line arguments are analysed. The user can chose between two options:

    • video files (by choosing the option -vid);
    • image sequences (by choosing the option -img).
    if(strcmp(argv[1], "-vid") == 0) {
      //input data coming from a video
      processVideo(argv[2]);
    }
    else if(strcmp(argv[1], "-img") == 0) {
      //input data coming from a sequence of images
      processImages(argv[2]);
    }
    
  4. Suppose you want to process a video file. The video is read until the end is reached or the user presses the button ‘q’ or the button ‘ESC’.

    while( (char)keyboard != 'q' && (char)keyboard != 27 ){
      //read the current frame
      if(!capture.read(frame)) {
        cerr << "Unable to read next frame." << endl;
        cerr << "Exiting..." << endl;
        exit(EXIT_FAILURE);
      }
    
  5. Every frame is used both for calculating the foreground mask and for updating the background. If you want to change the learning rate used for updating the background model, it is possible to set a specific learning rate by passing a third parameter to the ‘apply’ method.

    //update the background model
    pMOG->apply(frame, fgMaskMOG);
    pMOG2->apply(frame, fgMaskMOG2);
    
  6. The current frame number can be extracted from the VideoCapture object and stamped in the top left corner of the current frame. A white rectangle is used to highlight the black colored frame number.

    //get the frame number and write it on the current frame
    stringstream ss;
    rectangle(frame, cv::Point(10, 2), cv::Point(100,20),
              cv::Scalar(255,255,255), -1);
    ss << capture.get(CAP_PROP_POS_FRAMES);
    string frameNumberString = ss.str();
    putText(frame, frameNumberString.c_str(), cv::Point(15, 15),
            FONT_HERSHEY_SIMPLEX, 0.5 , cv::Scalar(0,0,0));
    
  7. We are ready to show the current input frame and the results.

    //show the current frame and the fg masks
    imshow("Frame", frame);
    imshow("FG Mask MOG", fgMaskMOG);
    imshow("FG Mask MOG 2", fgMaskMOG2);
    
  8. The same operations listed above can be performed using a sequence of images as input. The processImage function is called and, instead of using a VideoCapture object, the images are read by using imread, after individuating the correct path for the next frame to read.

    //read the first file of the sequence
    frame = imread(fistFrameFilename);
    if(!frame.data){
      //error in opening the first image
      cerr << "Unable to open first image frame: " << fistFrameFilename << endl;
      exit(EXIT_FAILURE);
    }
    ...
    //search for the next image in the sequence
    ostringstream oss;
    oss << (frameNumber + 1);
    string nextFrameNumberString = oss.str();
    string nextFrameFilename = prefix + nextFrameNumberString + suffix;
    //read the next frame
    frame = imread(nextFrameFilename);
    if(!frame.data){
      //error in opening the next image in the sequence
      cerr << "Unable to open image frame: " << nextFrameFilename << endl;
      exit(EXIT_FAILURE);
    }
    //update the path of the current frame
    fn.assign(nextFrameFilename);
    

    Note that this example works only on image sequences in which the filename format is <n>.png, where n is the frame number (e.g., 7.png).

Results

  • Given the following input parameters:

    -vid Video_001.avi
    

    The output of the program will look as the following:

    Background Subtraction - Video File
  • The video file Video_001.avi is part of the Background Models Challenge (BMC) data set and it can be downloaded from the following link Video_001 (about 32 MB).

  • If you want to process a sequence of images, then the ‘-img’ option has to be chosen:

    -img 111_png/input/1.png
    

    The output of the program will look as the following:

    Background Subtraction - Image Sequence
  • The sequence of images used in this example is part of the Background Models Challenge (BMC) dataset and it can be downloaded from the following link sequence 111 (about 708 MB). Please, note that this example works only on sequences in which the filename format is <n>.png, where n is the frame number (e.g., 7.png).

Evaluation

To quantitatively evaluate the results obtained, we need to:

  • Save the output images;
  • Have the ground truth images for the chosen sequence.

In order to save the output images, we can use imwrite. Adding the following code allows for saving the foreground masks.

string imageToSave = "output_MOG_" + frameNumberString + ".png";
bool saved = imwrite(imageToSave, fgMaskMOG);
if(!saved) {
  cerr << "Unable to save " << imageToSave << endl;
}

Once we have collected the result images, we can compare them with the ground truth data. There exist several publicly available sequences for background subtraction that come with ground truth data. If you decide to use the Background Models Challenge (BMC), then the result images can be used as input for the BMC Wizard. The wizard can compute different measures about the accuracy of the results.

References

  • Background Models Challenge (BMC) website, http://bmc.univ-bpclermont.fr/
  • Antoine Vacavant, Thierry Chateau, Alexis Wilhelm and Laurent Lequievre. A Benchmark Dataset for Foreground/Background Extraction. In ACCV 2012, Workshop: Background Models Challenge, LNCS 7728, 291-300. November 2012, Daejeon, Korea.