Common Interfaces of Descriptor Matchers

Matchers of keypoint descriptors in OpenCV have wrappers with a common interface that enables you to easily switch between different algorithms solving the same problem. This section is devoted to matching descriptors that are represented as vectors in a multidimensional space. All objects that implement vector descriptor matchers inherit the DescriptorMatcher interface.

Note

  • An example explaining keypoint matching can be found at opencv_source_code/samples/cpp/descriptor_extractor_matcher.cpp
  • An example on descriptor matching evaluation can be found at opencv_source_code/samples/cpp/detector_descriptor_matcher_evaluation.cpp
  • An example on one to many image matching can be found at opencv_source_code/samples/cpp/matching_to_many_images.cpp

DescriptorMatcher

class DescriptorMatcher : public Algorithm

Abstract base class for matching keypoint descriptors. It has two groups of match methods: for matching descriptors of an image with another image or with an image set.

class DescriptorMatcher
{
public:
    virtual ~DescriptorMatcher();

    virtual void add( InputArrayOfArrays descriptors );

    const vector<Mat>& getTrainDescriptors() const;
    virtual void clear();
    bool empty() const;
    virtual bool isMaskSupported() const = 0;

    virtual void train();

    /*
     * Group of methods to match descriptors from an image pair.
     */
    void match( InputArray queryDescriptors, InputArray trainDescriptors,
                vector<DMatch>& matches, InputArray mask=noArray() ) const;
    void knnMatch( InputArray queryDescriptors, InputArray trainDescriptors,
                   vector<vector<DMatch> >& matches, int k,
                   InputArray mask=noArray(), bool compactResult=false ) const;
    void radiusMatch( InputArray queryDescriptors, InputArray trainDescriptors,
                      vector<vector<DMatch> >& matches, float maxDistance,
                      InputArray mask=noArray(), bool compactResult=false ) const;
    /*
     * Group of methods to match descriptors from one image to an image set.
     */
    void match( InputArray queryDescriptors, vector<DMatch>& matches,
                InputArrayOfArrays masks=noArray() );
    void knnMatch( InputArray queryDescriptors, vector<vector<DMatch> >& matches,
                   int k, InputArrayOfArrays masks=noArray(),
                   bool compactResult=false );
    void radiusMatch( InputArray queryDescriptors, vector<vector<DMatch> >& matches,
                      float maxDistance, InputArrayOfArrays masks=noArray(),
                      bool compactResult=false );

    virtual void read( const FileNode& );
    virtual void write( FileStorage& ) const;

    virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;

    static Ptr<DescriptorMatcher> create( const String& descriptorMatcherType );

protected:
    vector<Mat> trainDescCollection;
    vector<UMat> utrainDescCollection;
    ...
};

DescriptorMatcher::add

Adds descriptors to train a CPU(trainDescCollectionis) or GPU(utrainDescCollectionis) descriptor collection. If the collection is not empty, the new descriptors are added to existing train descriptors.

C++: void DescriptorMatcher::add(InputArrayOfArrays descriptors)
Parameters:
  • descriptors – Descriptors to add. Each descriptors[i] is a set of descriptors from the same train image.

DescriptorMatcher::getTrainDescriptors

Returns a constant link to the train descriptor collection trainDescCollection .

C++: const vector<Mat>& DescriptorMatcher::getTrainDescriptors() const

DescriptorMatcher::clear

Clears the train descriptor collections.

C++: void DescriptorMatcher::clear()

DescriptorMatcher::empty

Returns true if there are no train descriptors in the both collections.

C++: bool DescriptorMatcher::empty() const

DescriptorMatcher::isMaskSupported

Returns true if the descriptor matcher supports masking permissible matches.

C++: bool DescriptorMatcher::isMaskSupported()

DescriptorMatcher::train

Trains a descriptor matcher

C++: void DescriptorMatcher::train()

Trains a descriptor matcher (for example, the flann index). In all methods to match, the method train() is run every time before matching. Some descriptor matchers (for example, BruteForceMatcher) have an empty implementation of this method. Other matchers really train their inner structures (for example, FlannBasedMatcher trains flann::Index ).

DescriptorMatcher::match

Finds the best match for each descriptor from a query set.

C++: void DescriptorMatcher::match(InputArray queryDescriptors, InputArray trainDescriptors, vector<DMatch>& matches, InputArray mask=noArray() ) const
C++: void DescriptorMatcher::match(InputArray queryDescriptors, vector<DMatch>& matches, InputArrayOfArrays masks=noArray() )
Parameters:
  • queryDescriptors – Query set of descriptors.
  • trainDescriptors – Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
  • matches – Matches. If a query descriptor is masked out in mask , no match is added for this descriptor. So, matches size may be smaller than the query descriptors count.
  • mask – Mask specifying permissible matches between an input query and train matrices of descriptors.
  • masks – Set of masks. Each masks[i] specifies permissible matches between the input query descriptors and stored train descriptors from the i-th image trainDescCollection[i].

In the first variant of this method, the train descriptors are passed as an input argument. In the second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is used. Optional mask (or masks) can be passed to specify which query and training descriptors can be matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if mask.at<uchar>(i,j) is non-zero.

DescriptorMatcher::knnMatch

Finds the k best matches for each descriptor from a query set.

C++: void DescriptorMatcher::knnMatch(InputArray queryDescriptors, InputArray trainDescriptors, vector<vector<DMatch>>& matches, int k, InputArray mask=noArray(), bool compactResult=false ) const
C++: void DescriptorMatcher::knnMatch(InputArray queryDescriptors, vector<vector<DMatch>>& matches, int k, InputArrayOfArrays masks=noArray(), bool compactResult=false )
Parameters:
  • queryDescriptors – Query set of descriptors.
  • trainDescriptors – Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
  • mask – Mask specifying permissible matches between an input query and train matrices of descriptors.
  • masks – Set of masks. Each masks[i] specifies permissible matches between the input query descriptors and stored train descriptors from the i-th image trainDescCollection[i].
  • matches – Matches. Each matches[i] is k or less matches for the same query descriptor.
  • k – Count of best matches found per each query descriptor or less if a query descriptor has less than k possible matches in total.
  • compactResult – Parameter used when the mask (or masks) is not empty. If compactResult is false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, the matches vector does not contain matches for fully masked-out query descriptors.

These extended variants of DescriptorMatcher::match() methods find several best matches for each query descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match() for the details about query and train descriptors.

DescriptorMatcher::radiusMatch

For each query descriptor, finds the training descriptors not farther than the specified distance.

C++: void DescriptorMatcher::radiusMatch(InputArray queryDescriptors, InputArray trainDescriptors, vector<vector<DMatch>>& matches, float maxDistance, InputArray mask=noArray(), bool compactResult=false ) const
C++: void DescriptorMatcher::radiusMatch(InputArray queryDescriptors, vector<vector<DMatch>>& matches, float maxDistance, InputArrayOfArrays masks=noArray(), bool compactResult=false )
Parameters:
  • queryDescriptors – Query set of descriptors.
  • trainDescriptors – Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
  • mask – Mask specifying permissible matches between an input query and train matrices of descriptors.
  • masks – Set of masks. Each masks[i] specifies permissible matches between the input query descriptors and stored train descriptors from the i-th image trainDescCollection[i].
  • matches – Found matches.
  • compactResult – Parameter used when the mask (or masks) is not empty. If compactResult is false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, the matches vector does not contain matches for fully masked-out query descriptors.
  • maxDistance – Threshold for the distance between matched descriptors. Distance means here metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured in Pixels)!

For each query descriptor, the methods find such training descriptors that the distance between the query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are returned in the distance increasing order.

DescriptorMatcher::clone

Clones the matcher.

C++: Ptr<DescriptorMatcher> DescriptorMatcher::clone(bool emptyTrainData=false )
Parameters:
  • emptyTrainData – If emptyTrainData is false, the method creates a deep copy of the object, that is, copies both parameters and train data. If emptyTrainData is true, the method creates an object copy with the current parameters but with empty train data.

DescriptorMatcher::create

Creates a descriptor matcher of a given type with the default parameters (using default constructor).

C++: Ptr<DescriptorMatcher> DescriptorMatcher::create(const String& descriptorMatcherType)
Parameters:
  • descriptorMatcherType

    Descriptor matcher type. Now the following matcher types are supported:

    • BruteForce (it uses L2 )
    • BruteForce-L1
    • BruteForce-Hamming
    • BruteForce-Hamming(2)
    • FlannBased

BFMatcher

class BFMatcher : public DescriptorMatcher

Brute-force descriptor matcher. For each descriptor in the first set, this matcher finds the closest descriptor in the second set by trying each one. This descriptor matcher supports masking permissible matches of descriptor sets.

BFMatcher::BFMatcher

Brute-force matcher constructor.

C++: BFMatcher::BFMatcher(int normType=NORM_L2, bool crossCheck=false )
Parameters:
  • normType – One of NORM_L1, NORM_L2, NORM_HAMMING, NORM_HAMMING2. L1 and L2 norms are preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and BRIEF, NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4 (see ORB::ORB constructor description).
  • crossCheck – If it is false, this is will be default BFMatcher behaviour when it finds the k nearest neighbors for each query descriptor. If crossCheck==true, then the knnMatch() method with k=1 will only return pairs (i,j) such that for i-th query descriptor the j-th descriptor in the matcher’s collection is the nearest and vice versa, i.e. the BFMatcher will only return consistent pairs. Such technique usually produces best results with minimal number of outliers when there are enough matches. This is alternative to the ratio test, used by D. Lowe in SIFT paper.

FlannBasedMatcher

class FlannBasedMatcher : public DescriptorMatcher

Flann-based descriptor matcher. This matcher trains flann::Index_ on a train descriptor collection and calls its nearest search methods to find the best matches. So, this matcher may be faster when matching a large train collection than the brute force matcher. FlannBasedMatcher does not support masking permissible matches of descriptor sets because flann::Index does not support this.

class FlannBasedMatcher : public DescriptorMatcher
{
public:
    FlannBasedMatcher(
      const Ptr<flann::IndexParams>& indexParams=new flann::KDTreeIndexParams(),
      const Ptr<flann::SearchParams>& searchParams=new flann::SearchParams() );

    virtual void add( InputArrayOfArrays descriptors );
    virtual void clear();

    virtual void train();
    virtual bool isMaskSupported() const;

    virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const;
protected:
    ...
};