Stereo Correspondence

Note

  • A basic stereo matching example can be found at opencv_source_code/samples/gpu/stereo_match.cpp
  • A stereo matching example using several GPU’s can be found at opencv_source_code/samples/gpu/stereo_multi.cpp
  • A stereo matching example using several GPU’s and driver API can be found at opencv_source_code/samples/gpu/driver_api_stereo_multi.cpp

cuda::StereoBM

class cuda::StereoBM : public cv::StereoBM

Class computing stereo correspondence (disparity map) using the block matching algorithm.

.. seealso:: :ocv:class:`StereoBM`

cuda::createStereoBM

Creates StereoBM object.

C++: Ptr<cuda::StereoBM> cuda::createStereoBM(int numDisparities=64, int blockSize=19)
Parameters:
  • numDisparities – the disparity search range. For each pixel algorithm will find the best disparity from 0 (default minimum disparity) to numDisparities. The search range can then be shifted by changing the minimum disparity.
  • blockSize – the linear size of the blocks compared by the algorithm. The size should be odd (as the block is centered at the current pixel). Larger block size implies smoother, though less accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher chance for algorithm to find a wrong correspondence.

cuda::StereoBeliefPropagation

class cuda::StereoBeliefPropagation : public cv::StereoMatcher

Class computing stereo correspondence using the belief propagation algorithm.

class CV_EXPORTS StereoBeliefPropagation : public cv::StereoMatcher
{
public:
    using cv::StereoMatcher::compute;

    virtual void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream) = 0;

    //! version for user specified data term
    virtual void compute(InputArray data, OutputArray disparity, Stream& stream = Stream::Null()) = 0;

    //! number of BP iterations on each level
    virtual int getNumIters() const = 0;
    virtual void setNumIters(int iters) = 0;

    //! number of levels
    virtual int getNumLevels() const = 0;
    virtual void setNumLevels(int levels) = 0;

    //! truncation of data cost
    virtual double getMaxDataTerm() const = 0;
    virtual void setMaxDataTerm(double max_data_term) = 0;

    //! data weight
    virtual double getDataWeight() const = 0;
    virtual void setDataWeight(double data_weight) = 0;

    //! truncation of discontinuity cost
    virtual double getMaxDiscTerm() const = 0;
    virtual void setMaxDiscTerm(double max_disc_term) = 0;

    //! discontinuity single jump
    virtual double getDiscSingleJump() const = 0;
    virtual void setDiscSingleJump(double disc_single_jump) = 0;

    virtual int getMsgType() const = 0;
    virtual void setMsgType(int msg_type) = 0;

    static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels);
};

The class implements algorithm described in [Felzenszwalb2006] . It can compute own data cost (using a truncated linear model) or use a user-provided data cost.

Note

StereoBeliefPropagation requires a lot of memory for message storage:

width \_ step  \cdot height  \cdot ndisp  \cdot 4  \cdot (1 + 0.25)

and for data cost storage:

width\_step \cdot height \cdot ndisp \cdot (1 + 0.25 + 0.0625 +  \dotsm + \frac{1}{4^{levels}})

width_step is the number of bytes in a line including padding.

StereoBeliefPropagation uses a truncated linear model for the data cost and discontinuity terms:

DataCost = data \_ weight  \cdot \min ( \lvert Img_Left(x,y)-Img_Right(x-d,y)  \rvert , max \_ data \_ term)

DiscTerm =  \min (disc \_ single \_ jump  \cdot \lvert f_1-f_2  \rvert , max \_ disc \_ term)

For more details, see [Felzenszwalb2006].

By default, StereoBeliefPropagation uses floating-point arithmetics and the CV_32FC1 type for messages. But it can also use fixed-point arithmetics and the CV_16SC1 message type for better performance. To avoid an overflow in this case, the parameters must satisfy the following requirement:

10  \cdot 2^{levels-1}  \cdot max \_ data \_ term < SHRT \_ MAX

See also

StereoMatcher

cuda::createStereoBeliefPropagation

Creates StereoBeliefPropagation object.

C++: Ptr<cuda::StereoBeliefPropagation> cuda::createStereoBeliefPropagation(int ndisp=64, int iters=5, int levels=5, int msg_type=CV_32F)
Parameters:
  • ndisp – Number of disparities.
  • iters – Number of BP iterations on each level.
  • levels – Number of levels.
  • msg_type – Type for messages. CV_16SC1 and CV_32FC1 types are supported.

cuda::StereoBeliefPropagation::estimateRecommendedParams

Uses a heuristic method to compute the recommended parameters ( ndisp, iters and levels ) for the specified image size ( width and height ).

C++: void cuda::StereoBeliefPropagation::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels)

cuda::StereoBeliefPropagation::compute

Enables the stereo correspondence operator that finds the disparity for the specified data cost.

C++: void cuda::StereoBeliefPropagation::compute(InputArray data, OutputArray disparity, Stream& stream=Stream::Null())
Parameters:
  • data – User-specified data cost, a matrix of msg_type type and Size(<image columns>*ndisp, <image rows>) size.
  • disparity – Output disparity map. If disparity is empty, the output type is CV_16SC1 . Otherwise, the type is retained.
  • stream – Stream for the asynchronous version.

cuda::StereoConstantSpaceBP

class cuda::StereoConstantSpaceBP : public cuda::StereoBeliefPropagation

Class computing stereo correspondence using the constant space belief propagation algorithm.

class CV_EXPORTS StereoConstantSpaceBP : public cuda::StereoBeliefPropagation
{
public:
    //! number of active disparity on the first level
    virtual int getNrPlane() const = 0;
    virtual void setNrPlane(int nr_plane) = 0;

    virtual bool getUseLocalInitDataCost() const = 0;
    virtual void setUseLocalInitDataCost(bool use_local_init_data_cost) = 0;

    static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane);
};

The class implements algorithm described in [Yang2010]. StereoConstantSpaceBP supports both local minimum and global minimum data cost initialization algorithms. For more details, see the paper mentioned above. By default, a local algorithm is used. To enable a global algorithm, set use_local_init_data_cost to false .

StereoConstantSpaceBP uses a truncated linear model for the data cost and discontinuity terms:

DataCost = data \_ weight  \cdot \min ( \lvert I_2-I_1  \rvert , max \_ data \_ term)

DiscTerm =  \min (disc \_ single \_ jump  \cdot \lvert f_1-f_2  \rvert , max \_ disc \_ term)

For more details, see [Yang2010].

By default, StereoConstantSpaceBP uses floating-point arithmetics and the CV_32FC1 type for messages. But it can also use fixed-point arithmetics and the CV_16SC1 message type for better performance. To avoid an overflow in this case, the parameters must satisfy the following requirement:

10  \cdot 2^{levels-1}  \cdot max \_ data \_ term < SHRT \_ MAX

cuda::createStereoConstantSpaceBP

Creates StereoConstantSpaceBP object.

C++: Ptr<cuda::StereoConstantSpaceBP> cuda::createStereoConstantSpaceBP(int ndisp=128, int iters=8, int levels=4, int nr_plane=4, int msg_type=CV_32F)
Parameters:
  • ndisp – Number of disparities.
  • iters – Number of BP iterations on each level.
  • levels – Number of levels.
  • nr_plane – Number of disparity levels on the first level.
  • msg_type – Type for messages. CV_16SC1 and CV_32FC1 types are supported.

cuda::StereoConstantSpaceBP::estimateRecommendedParams

Uses a heuristic method to compute parameters (ndisp, iters, levelsand nrplane) for the specified image size (widthand height).

C++: void cuda::StereoConstantSpaceBP::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane)

cuda::DisparityBilateralFilter

class cuda::DisparityBilateralFilter : public cv::Algorithm

Class refining a disparity map using joint bilateral filtering.

class CV_EXPORTS DisparityBilateralFilter : public cv::Algorithm
{
public:
    //! the disparity map refinement operator. Refine disparity map using joint bilateral filtering given a single color image.
    //! disparity must have CV_8U or CV_16S type, image must have CV_8UC1 or CV_8UC3 type.
    virtual void apply(InputArray disparity, InputArray image, OutputArray dst, Stream& stream = Stream::Null()) = 0;

    virtual int getNumDisparities() const = 0;
    virtual void setNumDisparities(int numDisparities) = 0;

    virtual int getRadius() const = 0;
    virtual void setRadius(int radius) = 0;

    virtual int getNumIters() const = 0;
    virtual void setNumIters(int iters) = 0;

    //! truncation of data continuity
    virtual double getEdgeThreshold() const = 0;
    virtual void setEdgeThreshold(double edge_threshold) = 0;

    //! truncation of disparity continuity
    virtual double getMaxDiscThreshold() const = 0;
    virtual void setMaxDiscThreshold(double max_disc_threshold) = 0;

    //! filter range sigma
    virtual double getSigmaRange() const = 0;
    virtual void setSigmaRange(double sigma_range) = 0;
};

The class implements [Yang2010] algorithm.

cuda::createDisparityBilateralFilter

Creates DisparityBilateralFilter object.

C++: Ptr<cuda::DisparityBilateralFilter> cuda::createDisparityBilateralFilter(int ndisp=64, int radius=3, int iters=1)
Parameters:
  • ndisp – Number of disparities.
  • radius – Filter radius.
  • iters – Number of iterations.

cuda::DisparityBilateralFilter::apply

Refines a disparity map using joint bilateral filtering.

C++: void cuda::DisparityBilateralFilter::apply(InputArray disparity, InputArray image, OutputArray dst, Stream& stream=Stream::Null())
Parameters:
  • disparity – Input disparity map. CV_8UC1 and CV_16SC1 types are supported.
  • image – Input image. CV_8UC1 and CV_8UC3 types are supported.
  • dst – Destination disparity map. It has the same size and type as disparity .
  • stream – Stream for the asynchronous version.

cuda::reprojectImageTo3D

Reprojects a disparity image to 3D space.

C++: void cuda::reprojectImageTo3D(InputArray disp, OutputArray xyzw, InputArray Q, int dst_cn=4, Stream& stream=Stream::Null())
Parameters:
  • disp – Input disparity image. CV_8U and CV_16S types are supported.
  • xyzw – Output 3- or 4-channel floating-point image of the same size as disp . Each element of xyzw(x,y) contains 3D coordinates (x,y,z) or (x,y,z,1) of the point (x,y) , computed from the disparity map.
  • Q4 \times 4 perspective transformation matrix that can be obtained via stereoRectify() .
  • dst_cn – The number of channels for output image. Can be 3 or 4.
  • stream – Stream for the asynchronous version.

cuda::drawColorDisp

Colors a disparity image.

C++: void cuda::drawColorDisp(InputArray src_disp, OutputArray dst_disp, int ndisp, Stream& stream=Stream::Null())
Parameters:
  • src_disp – Source disparity image. CV_8UC1 and CV_16SC1 types are supported.
  • dst_disp – Output disparity image. It has the same size as src_disp . The type is CV_8UC4 in BGRA format (alpha = 255).
  • ndisp – Number of disparities.
  • stream – Stream for the asynchronous version.

This function draws a colored disparity map by converting disparity values from [0..ndisp) interval first to HSV color space (where different disparity values correspond to different hues) and then converting the pixels to RGB for visualization.

[Felzenszwalb2006](1, 2) Pedro F. Felzenszwalb algorithm [Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient belief propagation for early vision. International Journal of Computer Vision, 70(1), October 2006
[Yang2010](1, 2, 3)
  1. Yang, L. Wang, and N. Ahuja. A constant-space belief propagation algorithm for stereo matching. In CVPR, 2010.