Cascade classifier class used for object detection. Supports HAAR cascade classifier in the form of cross link
class CV_EXPORTS OclCascadeClassifier : public CascadeClassifier
{
public:
OclCascadeClassifier() {};
~OclCascadeClassifier() {};
CvSeq *oclHaarDetectObjects(oclMat &gimg, CvMemStorage *storage,
double scaleFactor,int minNeighbors,
int flags, CvSize minSize = cvSize(0, 0),
CvSize maxSize = cvSize(0, 0));
};
Returns the detected objects by a list of rectangles
Parameters: |
|
---|
Detects objects of different sizes in the input image,only tested for face detection now. The function returns the number of detected objects.
Class providing memory buffers for ocl::matchTemplate() function, plus it allows to adjust some specific parameters.
struct CV_EXPORTS MatchTemplateBuf
{
Size user_block_size;
oclMat imagef, templf;
std::vector<oclMat> images;
std::vector<oclMat> image_sums;
std::vector<oclMat> image_sqsums;
};
You can use field user_block_size to set specific block size for ocl::matchTemplate() function. If you leave its default value Size(0,0) then automatic estimation of block size will be used (which is optimized for speed). By varying user_block_size you can reduce memory requirements at the cost of speed.
Computes a proximity map for a raster template and an image where the template is searched for.
Parameters: |
|
---|
The following methods are supported for the CV_8U depth images for now:
The following methods are supported for the CV_32F images for now:
See also
Class used for extracting Speeded Up Robust Features (SURF) from an image.
class SURF_OCL
{
public:
enum KeypointLayout
{
X_ROW = 0,
Y_ROW,
LAPLACIAN_ROW,
OCTAVE_ROW,
SIZE_ROW,
ANGLE_ROW,
HESSIAN_ROW,
ROWS_COUNT
};
//! the default constructor
SURF_OCL();
//! the full constructor taking all the necessary parameters
explicit SURF_OCL(double _hessianThreshold, int _nOctaves=4,
int _nOctaveLayers=2, bool _extended=false, float _keypointsRatio=0.01f, bool _upright = false);
//! returns the descriptor size in float's (64 or 128)
int descriptorSize() const;
//! upload host keypoints to device memory
void uploadKeypoints(const vector<KeyPoint>& keypoints,
oclMat& keypointsocl);
//! download keypoints from device to host memory
void downloadKeypoints(const oclMat& keypointsocl,
vector<KeyPoint>& keypoints);
//! download descriptors from device to host memory
void downloadDescriptors(const oclMat& descriptorsocl,
vector<float>& descriptors);
void operator()(const oclMat& img, const oclMat& mask,
oclMat& keypoints);
void operator()(const oclMat& img, const oclMat& mask,
oclMat& keypoints, oclMat& descriptors,
bool useProvidedKeypoints = false);
void operator()(const oclMat& img, const oclMat& mask,
std::vector<KeyPoint>& keypoints);
void operator()(const oclMat& img, const oclMat& mask,
std::vector<KeyPoint>& keypoints, oclMat& descriptors,
bool useProvidedKeypoints = false);
void operator()(const oclMat& img, const oclMat& mask,
std::vector<KeyPoint>& keypoints,
std::vector<float>& descriptors,
bool useProvidedKeypoints = false);
void releaseMemory();
// SURF parameters
double hessianThreshold;
int nOctaves;
int nOctaveLayers;
bool extended;
bool upright;
//! max keypoints = min(keypointsRatio * img.size().area(), 65535)
float keypointsRatio;
oclMat sum, mask1, maskSum, intBuffer;
oclMat det, trace;
oclMat maxPosBuffer;
};
The class SURF_OCL implements Speeded Up Robust Features descriptor. There is a fast multi-scale Hessian keypoint detector that can be used to find the keypoints (which is the default option). But the descriptors can also be computed for the user-specified keypoints. Only 8-bit grayscale images are supported.
The class SURF_OCL can store results in the GPU and CPU memory. It provides functions to convert results between CPU and GPU version ( uploadKeypoints, downloadKeypoints, downloadDescriptors ). The format of CPU results is the same as SURF results. GPU results are stored in oclMat. The keypoints matrix is matrix with the CV_32FC1 type.
The descriptors matrix is matrix with the CV_32FC1 type.
The class SURF_OCL uses some buffers and provides access to it. All buffers can be safely released between function calls.
See also