Operations on Matrics ============================= .. highlight:: cpp ocl::abs ------------------ Returns void .. ocv:function:: void ocl::abs(const oclMat& src, oclMat& dst) :param src: input array. :param dst: destination array, it will have the same size and same type as ``src``. Computes per-element absolute values of the input array. Supports all data types. ocl::absdiff ------------------ Returns void .. ocv:function:: void ocl::absdiff(const oclMat& src1, const oclMat& src2, oclMat& dst) .. ocv:function:: void ocl::absdiff(const oclMat& src1, const Scalar& s, oclMat& dst) :param src1: the first input array. :param src2: the second input array, must be the same size and same type as ``src1``. :param s: scalar, the second input parameter. :param dst: the destination array, it will have the same size and same type as ``src1``. Computes per-element absolute difference between two arrays or between array and a scalar. Supports all data types. ocl::add ------------------ Returns void .. ocv:function:: void ocl::add(const oclMat & src1, const oclMat & src2, oclMat & dst, const oclMat & mask = oclMat()) .. ocv:function:: void ocl::add(const oclMat & src1, const Scalar & s, oclMat & dst, const oclMat & mask = oclMat()) :param src1: the first input array. :param src2: the second input array, must be the same size and same type as ``src1``. :param s: scalar, the second input parameter :param dst: the destination array, it will have the same size and same type as ``src1``. :param mask: the optional operation mask, 8-bit single channel array; specifies elements of the destination array to be changed. Computes per-element additon between two arrays or between array and a scalar. Supports all data types. ocl::addWeighted -------------------- Computes the weighted sum of two arrays. .. ocv:function:: void ocl::addWeighted(const oclMat& src1, double alpha, const oclMat& src2, double beta, double gama, oclMat& dst) :param src1: First source array. :param alpha: Weight for the first array elements. :param src2: Second source array of the same size and channel number as ``src1`` . :param beta: Weight for the second array elements. :param dst: Destination array that has the same size and number of channels as the input arrays. :param gamma: Scalar added to each sum. The function ``addWeighted`` calculates the weighted sum of two arrays as follows: .. math:: \texttt{c} (I)= \texttt{saturate} ( \texttt{a} (I)* \texttt{alpha} + \texttt{b} (I)* \texttt{beta} + \texttt{gamma} ) where ``I`` is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently. .. seealso:: :ocv:func:`addWeighted` ocl::bitwise_and ------------------ Returns void .. ocv:function:: void ocl::bitwise_and(const oclMat& src1, const oclMat& src2, oclMat& dst, const oclMat& mask = oclMat()) .. ocv:function:: void ocl::bitwise_and(const oclMat& src1, const Scalar& s, oclMat& dst, const oclMat& mask = oclMat()) :param src1: the first input array. :param src2: the second input array, must be the same size and same type as ``src1``. :param s: scalar, the second input parameter. :param dst: the destination array, it will have the same size and same type as ``src1``. :param mask: the optional operation mask, 8-bit single channel array; specifies elements of the destination array to be changed. Computes per-element bitwise_and between two arrays or between array and a scalar. Supports all data types. ocl::bitwise_not ------------------ Returns void .. ocv:function:: void ocl::bitwise_not(const oclMat &src, oclMat &dst) :param src: the input array. :param dst: the destination array, it will have the same size and same type as ``src``. The functions bitwise not compute per-element bit-wise inversion of the source array. Supports all data types. ocl::bitwise_or ------------------ Returns void .. ocv:function:: void ocl::bitwise_or(const oclMat& src1, const oclMat& src2, oclMat& dst, const oclMat& mask = oclMat()) .. ocv:function:: void ocl::bitwise_or(const oclMat& src1, const Scalar& s, oclMat& dst, const oclMat& mask = oclMat()) :param src1: the first input array. :param src2: the second input array, must be the same size and same type as ``src1``. :param s: scalar, the second input parameter. :param dst: the destination array, it will have the same size and same type as ``src1``. :param mask: the optional operation mask, 8-bit single channel array; specifies elements of the destination array to be changed. Computes per-element bitwise_or between two arrays or between array and a scalar. Supports all data types. ocl::bitwise_xor ------------------ Returns void .. ocv:function:: void ocl::bitwise_xor(const oclMat& src1, const oclMat& src2, oclMat& dst, const oclMat& mask = oclMat()) .. ocv:function:: void ocl::bitwise_xor(const oclMat& src1, const Scalar& s, oclMat& dst, const oclMat& mask = oclMat()) :param src1: the first input array. :param src2: the second input array, must be the same size and same type as ``src1``. :param sc: scalar, the second input parameter. :param dst: the destination array, it will have the same size and same type as ``src1``. :param mask: the optional operation mask, 8-bit single channel array; specifies elements of the destination array to be changed. Computes per-element bitwise_xor between two arrays or between array and a scalar. Supports all data types. ocl::cartToPolar ------------------ Returns void .. ocv:function:: void ocl::cartToPolar(const oclMat &x, const oclMat &y, oclMat &magnitude, oclMat &angle, bool angleInDegrees = false) :param x: the array of x-coordinates; must be single-precision or double-precision floating-point array. :param y: the array of y-coordinates; it must have the same size and same type as ``x``. :param magnitude: the destination array of magnitudes of the same size and same type as ``x``. :param angle: the destination array of angles of the same size and same type as ``x``. The angles are measured in radians (0 to 2pi) or in degrees (0 to 360 degrees). :param angleInDegrees: the flag indicating whether the angles are measured in radians, which is default mode, or in degrees. Calculates the magnitude and angle of 2D vectors. Supports only ``CV_32F`` and ``CV_64F`` data types. ocl::compare ------------------ Returns void .. ocv:function:: void ocl::compare(const oclMat &src1, const oclMat &src2, oclMat &dst, int cmpop) :param src1: the first source array. :param src2: the second source array; must have the same size and same type as ``src1``. :param dst: the destination array; will have the same size as ``src1`` and type ``CV_8UC1``. :param cmpop: the flag specifying the relation between the elements to be checked. Performs per-element comparison of two arrays or an array and scalar value. Supports all data types. ocl::dft ------------ Performs a forward or inverse discrete Fourier transform (1D or 2D) of the floating point matrix. .. ocv:function:: void ocl::dft(const oclMat& src, oclMat& dst, Size dft_size = Size(), int flags = 0) :param src: source matrix (real or complex). :param dst: destination matrix (real or complex). :param dft_size: size of original input, which is used for transformation from complex to real. :param flags: optional flags: * **DFT_ROWS** transforms each individual row of the source matrix. * **DFT_COMPLEX_OUTPUT** performs a forward transformation of 1D or 2D real array. The result, though being a complex array, has complex-conjugate symmetry (*CCS*, see the function description below for details). Such an array can be packed into a real array of the same size as input, which is the fastest option and which is what the function does by default. However, you may wish to get a full complex array (for simpler spectrum analysis, and so on). Pass the flag to enable the function to produce a full-size complex output array. * **DFT_INVERSE** inverts DFT. Use for complex-complex cases (real-complex and complex-real cases are always forward and inverse, respectively). * **DFT_REAL_OUTPUT** specifies the output as real. The source matrix is the result of real-complex transform, so the destination matrix must be real. Use to handle real matrices (``CV_32FC1``) and complex matrices in the interleaved format (``CV_32FC2``). The ``dft_size`` must be powers of ``2``, ``3`` and ``5``. Real to complex dft output is not the same with cpu version. Real to complex and complex to real does not support ``DFT_ROWS``. .. seealso:: :ocv:func:`dft` ocl::divide ------------------ Returns void .. ocv:function:: void ocl::divide(const oclMat& src1, const oclMat& src2, oclMat& dst, double scale = 1) .. ocv:function:: void ocl::divide(double scale, const oclMat& src1, oclMat& dst) :param src1: the first input array. :param src2: the second input array, must be the same size and same type as ``src1``. :param dst: the destination array, it will have the same size and same type as ``src1``. :param scale: scalar factor. Computes per-element divide between two arrays or between array and a scalar. Supports all data types. ocl::exp ------------------ Returns void .. ocv:function:: void ocl::exp(const oclMat &src, oclMat &dst) :param src: the first source array. :param dst: the dst array; must have the same size and same type as ``src``. The function exp calculates the exponent of every element of the input array. Supports only ``CV_32FC1`` and ``CV_64F`` data types. ocl::flip ------------------ Returns void .. ocv:function:: void ocl::flip(const oclMat& src, oclMat& dst, int flipCode) :param src: source image. :param dst: destination image. :param flipCode: specifies how to flip the array: 0 means flipping around the x-axis, positive (e.g., 1) means flipping around y-axis, and negative (e.g., -1) means flipping around both axes. The function flip flips the array in one of three different ways (row and column indices are 0-based). Supports all data types. ocl::gemm ------------------ Performs generalized matrix multiplication. .. ocv:function:: void ocl::gemm(const oclMat& src1, const oclMat& src2, double alpha, const oclMat& src3, double beta, oclMat& dst, int flags = 0) :param src1: first multiplied input matrix that should be ``CV_32FC1`` type. :param src2: second multiplied input matrix of the same type as ``src1``. :param alpha: weight of the matrix product. :param src3: third optional delta matrix added to the matrix product. It should have the same type as ``src1`` and ``src2``. :param beta: weight of ``src3``. :param dst: destination matrix. It has the proper size and the same type as input matrices. :param flags: operation flags: * **GEMM_1_T** transpose ``src1``. * **GEMM_2_T** transpose ``src2``. .. seealso:: :ocv:func:`gemm` ocl::log ------------------ Returns void .. ocv:function:: void ocl::log(const oclMat &src, oclMat &dst) :param src: the first source array. :param dst: the dst array; must have the same size and same type as ``src``. The function log calculates the log of every element of the input array. Supports only ``CV_32FC1`` and ``CV_64F`` data types. ocl::LUT ------------------ Returns void .. ocv:function:: void ocl::LUT(const oclMat &src, const oclMat &lut, oclMat &dst) :param src: source array of 8-bit elements. :param lut: look-up table of 256 elements. In the case of multi-channel source array, the table should either have a single channel (in this case the same table is used for all channels) or the same number of channels as in the source array. :param dst: destination array; will have the same size and the same number of channels as ``src``, and the same depth as ``lut``. Performs a look-up table transform of an array. ocl::magnitude ------------------ Returns void .. ocv:function:: void ocl::magnitude(const oclMat &x, const oclMat &y, oclMat &magnitude) :param x: the floating-point array of x-coordinates of the vectors. :param y: the floating-point array of y-coordinates of the vectors; must have the same size as ``x``. :param magnitude: the destination array; will have the same size and same type as ``x``. The function magnitude calculates magnitude of 2D vectors formed from the corresponding elements of ``x`` and ``y`` arrays. Supports only ``CV_32F`` and ``CV_64F`` data types. ocl::meanStdDev ------------------ Returns void .. ocv:function:: void ocl::meanStdDev(const oclMat &mtx, Scalar &mean, Scalar &stddev) :param mtx: source image. :param mean: the output parameter: computed mean value. :param stddev: the output parameter: computed standard deviation. The functions meanStdDev compute the mean and the standard deviation M of array elements, independently for each channel, and return it via the output parameters. Supports all data types. ocl::merge ------------------ Returns void .. ocv:function:: void ocl::merge(const vector &src, oclMat &dst) :param src: The source array or vector of the single-channel matrices to be merged. All the matrices in src must have the same size and the same type. :param dst: The destination array; will have the same size and the same depth as src, the number of channels will match the number of source matrices. Composes a multi-channel array from several single-channel arrays. Supports all data types. ocl::multiply ------------------ Returns void .. ocv:function:: void ocl::multiply(const oclMat& src1, const oclMat& src2, oclMat& dst, double scale = 1) :param src1: the first input array. :param src2: the second input array, must be the same size and same type as ``src1``. :param dst: the destination array, it will have the same size and same type as ``src1``. :param scale: optional scale factor. Computes per-element multiply between two arrays or between array and a scalar. Supports all data types. ocl::norm ------------------ Returns the calculated norm .. ocv:function:: double ocl::norm(const oclMat &src1, int normType = NORM_L2) .. ocv:function:: double ocl::norm(const oclMat &src1, const oclMat &src2, int normType = NORM_L2) :param src1: the first source array. :param src2: the second source array of the same size and the same type as ``src1``. :param normType: type of the norm. The functions ``norm`` calculate an absolute norm of ``src1`` (when there is no ``src2`` ): .. math:: norm = \forkthree{\|\texttt{src1}\|_{L_{\infty}} = \max _I | \texttt{src1} (I)|}{if $\texttt{normType} = \texttt{NORM\_INF}$ } { \| \texttt{src1} \| _{L_1} = \sum _I | \texttt{src1} (I)|}{if $\texttt{normType} = \texttt{NORM\_L1}$ } { \| \texttt{src1} \| _{L_2} = \sqrt{\sum_I \texttt{src1}(I)^2} }{if $\texttt{normType} = \texttt{NORM\_L2}$ } or an absolute or relative difference norm if ``src2`` is there: .. math:: norm = \forkthree{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} = \max _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if $\texttt{normType} = \texttt{NORM\_INF}$ } { \| \texttt{src1} - \texttt{src2} \| _{L_1} = \sum _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if $\texttt{normType} = \texttt{NORM\_L1}$ } { \| \texttt{src1} - \texttt{src2} \| _{L_2} = \sqrt{\sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2} }{if $\texttt{normType} = \texttt{NORM\_L2}$ } or .. math:: norm = \forkthree{\frac{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} }{\|\texttt{src2}\|_{L_{\infty}} }}{if $\texttt{normType} = \texttt{NORM\_RELATIVE\_INF}$ } { \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if $\texttt{normType} = \texttt{NORM\_RELATIVE\_L1}$ } { \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if $\texttt{normType} = \texttt{NORM\_RELATIVE\_L2}$ } The functions ``norm`` return the calculated norm. A multi-channel input arrays are treated as a single-channel, that is, the results for all channels are combined. ocl::oclMat::convertTo -------------------------- Returns void .. ocv:function:: void ocl::oclMat::convertTo(oclMat &m, int rtype, double alpha = 1, double beta = 0) const :param m: the destination matrix. If it does not have a proper size or type before the operation, it will be reallocated. :param rtype: the desired destination matrix type, or rather, the depth (since the number of channels will be the same with the source one). If rtype is negative, the destination matrix will have the same type as the source. :param alpha: optional scale factor. :param beta: optional delta added to the scaled values. The method converts source pixel values to the target datatype. Saturate cast is applied in the end to avoid possible overflows. Supports all data types. ocl::oclMat::copyTo ----------------------- Returns void .. ocv:function:: void ocl::oclMat::copyTo(oclMat &m, const oclMat &mask = oclMat()) const :param m: The destination matrix. If it does not have a proper size or type before the operation, it will be reallocated. :param mask: The operation mask. Its non-zero elements indicate, which matrix elements need to be copied. Copies the matrix to another one. Supports all data types. ocl::oclMat::setTo ---------------------- Returns oclMat .. ocv:function:: oclMat& ocl::oclMat::setTo(const Scalar &s, const oclMat &mask = oclMat()) :param s: Assigned scalar, which is converted to the actual array type. :param mask: The operation mask of the same size as ``*this`` and type ``CV_8UC1``. Sets all or some of the array elements to the specified value. This is the advanced variant of Mat::operator=(const Scalar s) operator. Supports all data types. ocl::phase ------------------ Returns void .. ocv:function:: void ocl::phase(const oclMat &x, const oclMat &y, oclMat &angle, bool angleInDegrees = false) :param x: the source floating-point array of x-coordinates of 2D vectors :param y: the source array of y-coordinates of 2D vectors; must have the same size and the same type as ``x``. :param angle: the destination array of vector angles; it will have the same size and same type as ``x``. :param angleInDegrees: when it is true, the function will compute angle in degrees, otherwise they will be measured in radians. The function phase computes the rotation angle of each 2D vector that is formed from the corresponding elements of ``x`` and ``y``. Supports only ``CV_32FC1`` and ``CV_64FC1`` data type. ocl::polarToCart ------------------ Returns void .. ocv:function:: void ocl::polarToCart(const oclMat &magnitude, const oclMat &angle, oclMat &x, oclMat &y, bool angleInDegrees = false) :param magnitude: the source floating-point array of magnitudes of 2D vectors. It can be an empty matrix (=Mat()) - in this case the function assumes that all the magnitudes are = 1. If it's not empty, it must have the same size and same type as ``angle``. :param angle: the source floating-point array of angles of the 2D vectors. :param x: the destination array of x-coordinates of 2D vectors; will have the same size and the same type as ``angle``. :param y: the destination array of y-coordinates of 2D vectors; will have the same size and the same type as ``angle``. :param angleInDegrees: the flag indicating whether the angles are measured in radians, which is default mode, or in degrees. The function polarToCart computes the cartesian coordinates of each 2D vector represented by the corresponding elements of magnitude and angle. Supports only ``CV_32F`` and ``CV_64F`` data types. ocl::pow ------------------ Returns void .. ocv:function:: void ocl::pow(const oclMat &x, double p, oclMat &y) :param x: the source array. :param p: the exponent of power; the source floating-point array of angles of the 2D vectors. :param y: the destination array, should be the same type as the source. The function pow raises every element of the input array to ``p``. Supports only ``CV_32FC1`` and ``CV_64FC1`` data types. ocl::setIdentity ------------------ Returns void .. ocv:function:: void ocl::setIdentity(oclMat& src, const Scalar & val = Scalar(1)) :param src: matrix to initialize (not necessarily square). :param val: value to assign to diagonal elements. The function initializes a scaled identity matrix. ocl::sortByKey ------------------ Returns void .. ocv:function:: void ocl::sortByKey(oclMat& keys, oclMat& values, int method, bool isGreaterThan = false) :param keys: the keys to be used as sorting indices. :param values: the array of values. :param isGreaterThan: determine sorting order. :param method: supported sorting methods: * **SORT_BITONIC** bitonic sort, only support power-of-2 buffer size. * **SORT_SELECTION** selection sort, currently cannot sort duplicate keys. * **SORT_MERGE** merge sort. * **SORT_RADIX** radix sort, only support signed int/float keys(``CV_32S``/``CV_32F``). Returns the sorted result of all the elements in values based on equivalent keys. The element unit in the values to be sorted is determined from the data type, i.e., a ``CV_32FC2`` input ``{a1a2, b1b2}`` will be considered as two elements, regardless its matrix dimension. Both keys and values will be sorted inplace. Keys needs to be a **single** channel ``oclMat``. Example:: input - keys = {2, 3, 1} (CV_8UC1) values = {10,5, 4,3, 6,2} (CV_8UC2) sortByKey(keys, values, SORT_SELECTION, false); output - keys = {1, 2, 3} (CV_8UC1) values = {6,2, 10,5, 4,3} (CV_8UC2) ocl::split ------------------ Returns void .. ocv:function:: void ocl::split(const oclMat &src, vector &dst) :param src: The source multi-channel array :param dst: The destination array or vector of arrays; The number of arrays must match src.channels(). The arrays themselves will be reallocated if needed. The functions split split multi-channel array into separate single-channel arrays. Supports all data types. ocl::subtract ------------------ Returns void .. ocv:function:: void ocl::subtract(const oclMat& src1, const oclMat& src2, oclMat& dst, const oclMat& mask = oclMat()) .. ocv:function:: void ocl::subtract(const oclMat& src1, const Scalar& s, oclMat& dst, const oclMat& mask = oclMat()) :param src1: the first input array. :param src2: the second input array, must be the same size and same type as ``src1``. :param s: scalar, the second input parameter. :param dst: the destination array, it will have the same size and same type as ``src1``. :param mask: the optional operation mask, 8-bit single channel array; specifies elements of the destination array to be changed. Computes per-element subtract between two arrays or between array and a scalar. Supports all data types. ocl::transpose ------------------ Returns void .. ocv:function:: void ocl::transpose(const oclMat &src, oclMat &dst) :param src: the source array. :param dst: the destination array of the same type as ``src``. Transposes a matrix (in case when ``src`` == ``dst`` and matrix is square the operation are performed inplace).