Feature Detection and Description

gpu::SURF_GPU

class gpu::SURF_GPU

Class used for extracting Speeded Up Robust Features (SURF) from an image.

class SURF_GPU
{
public:
    enum KeypointLayout
    {
        X_ROW = 0,
        Y_ROW,
        LAPLACIAN_ROW,
        OCTAVE_ROW,
        SIZE_ROW,
        ANGLE_ROW,
        HESSIAN_ROW,
        ROWS_COUNT
    };

    //! the default constructor
    SURF_GPU();
    //! the full constructor taking all the necessary parameters
    explicit SURF_GPU(double _hessianThreshold, int _nOctaves=4,
         int _nOctaveLayers=2, bool _extended=false, float _keypointsRatio=0.01f);

    //! returns the descriptor size in float's (64 or 128)
    int descriptorSize() const;

    //! upload host keypoints to device memory
    void uploadKeypoints(const vector<KeyPoint>& keypoints,
        GpuMat& keypointsGPU);
    //! download keypoints from device to host memory
    void downloadKeypoints(const GpuMat& keypointsGPU,
        vector<KeyPoint>& keypoints);

    //! download descriptors from device to host memory
    void downloadDescriptors(const GpuMat& descriptorsGPU,
        vector<float>& descriptors);

    void operator()(const GpuMat& img, const GpuMat& mask,
        GpuMat& keypoints);

    void operator()(const GpuMat& img, const GpuMat& mask,
        GpuMat& keypoints, GpuMat& descriptors,
        bool useProvidedKeypoints = false,
        bool calcOrientation = true);

    void operator()(const GpuMat& img, const GpuMat& mask,
        std::vector<KeyPoint>& keypoints);

    void operator()(const GpuMat& img, const GpuMat& mask,
        std::vector<KeyPoint>& keypoints, GpuMat& descriptors,
        bool useProvidedKeypoints = false,
        bool calcOrientation = true);

    void operator()(const GpuMat& img, const GpuMat& mask,
        std::vector<KeyPoint>& keypoints,
        std::vector<float>& descriptors,
        bool useProvidedKeypoints = false,
        bool calcOrientation = true);

    void releaseMemory();

    // SURF parameters
    double hessianThreshold;
    int nOctaves;
    int nOctaveLayers;
    bool extended;
    bool upright;

    //! max keypoints = keypointsRatio * img.size().area()
    float keypointsRatio;

    GpuMat sum, mask1, maskSum, intBuffer;

    GpuMat det, trace;

    GpuMat maxPosBuffer;
};

The class SURF_GPU implements Speeded Up Robust Features descriptor. There is a fast multi-scale Hessian keypoint detector that can be used to find the keypoints (which is the default option). But the descriptors can also be computed for the user-specified keypoints. Only 8-bit grayscale images are supported.

The class SURF_GPU can store results in the GPU and CPU memory. It provides functions to convert results between CPU and GPU version ( uploadKeypoints, downloadKeypoints, downloadDescriptors ). The format of CPU results is the same as SURF results. GPU results are stored in GpuMat. The keypoints matrix is \texttt{nFeatures} \times 7 matrix with the CV_32FC1 type.

  • keypoints.ptr<float>(X_ROW)[i] contains x coordinate of the i-th feature.
  • keypoints.ptr<float>(Y_ROW)[i] contains y coordinate of the i-th feature.
  • keypoints.ptr<float>(LAPLACIAN_ROW)[i] contains the laplacian sign of the i-th feature.
  • keypoints.ptr<float>(OCTAVE_ROW)[i] contains the octave of the i-th feature.
  • keypoints.ptr<float>(SIZE_ROW)[i] contains the size of the i-th feature.
  • keypoints.ptr<float>(ANGLE_ROW)[i] contain orientation of the i-th feature.
  • keypoints.ptr<float>(HESSIAN_ROW)[i] contains the response of the i-th feature.

The descriptors matrix is \texttt{nFeatures} \times \texttt{descriptorSize} matrix with the CV_32FC1 type.

The class SURF_GPU uses some buffers and provides access to it. All buffers can be safely released between function calls.

See also

SURF

gpu::FAST_GPU

class gpu::FAST_GPU

Class used for corner detection using the FAST algorithm.

class FAST_GPU
{
public:
    enum
    {
        LOCATION_ROW = 0,
        RESPONSE_ROW,
        ROWS_COUNT
    };

    // all features have same size
    static const int FEATURE_SIZE = 7;

    explicit FAST_GPU(int threshold, bool nonmaxSupression = true,
                      double keypointsRatio = 0.05);

    void operator ()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints);
    void operator ()(const GpuMat& image, const GpuMat& mask,
                     std::vector<KeyPoint>& keypoints);

    void downloadKeypoints(const GpuMat& d_keypoints,
                           std::vector<KeyPoint>& keypoints);

    void convertKeypoints(const Mat& h_keypoints,
                          std::vector<KeyPoint>& keypoints);

    void release();

    bool nonmaxSupression;

    int threshold;

    double keypointsRatio;

    int calcKeyPointsLocation(const GpuMat& image, const GpuMat& mask);

    int getKeyPoints(GpuMat& keypoints);
};

The class FAST_GPU implements FAST corner detection algorithm.

See also

FAST()

gpu::FAST_GPU::FAST_GPU

Constructor.

C++: gpu::FAST_GPU::FAST_GPU(int threshold, bool nonmaxSupression=true, double keypointsRatio=0.05)
Parameters:
  • threshold – Threshold on difference between intensity of the central pixel and pixels on a circle around this pixel.
  • nonmaxSupression – If it is true, non-maximum suppression is applied to detected corners (keypoints).
  • keypointsRatio – Inner buffer size for keypoints store is determined as (keypointsRatio * image_width * image_height).

gpu::FAST_GPU::operator ()

Finds the keypoints using FAST detector.

C++: void gpu::FAST_GPU::operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints)
C++: void gpu::FAST_GPU::operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints)
Parameters:
  • image – Image where keypoints (corners) are detected. Only 8-bit grayscale images are supported.
  • mask – Optional input mask that marks the regions where we should detect features.
  • keypoints

    The output vector of keypoints. Can be stored both in CPU and GPU memory. For GPU memory:

    • keypoints.ptr<Vec2s>(LOCATION_ROW)[i] will contain location of i’th point
    • keypoints.ptr<float>(RESPONSE_ROW)[i] will contain response of i’th point (if non-maximum suppression is applied)

gpu::FAST_GPU::downloadKeypoints

Download keypoints from GPU to CPU memory.

C++: void gpu::FAST_GPU::downloadKeypoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints)

gpu::FAST_GPU::convertKeypoints

Converts keypoints from GPU representation to vector of KeyPoint.

C++: void gpu::FAST_GPU::convertKeypoints(const Mat& h_keypoints, std::vector<KeyPoint>& keypoints)

gpu::FAST_GPU::release

Releases inner buffer memory.

C++: void gpu::FAST_GPU::release()

gpu::FAST_GPU::calcKeyPointsLocation

Find keypoints and compute it’s response if nonmaxSupression is true.

C++: int gpu::FAST_GPU::calcKeyPointsLocation(const GpuMat& image, const GpuMat& mask)
Parameters:
  • image – Image where keypoints (corners) are detected. Only 8-bit grayscale images are supported.
  • mask – Optional input mask that marks the regions where we should detect features.

The function returns count of detected keypoints.

gpu::FAST_GPU::getKeyPoints

Gets final array of keypoints.

C++: int gpu::FAST_GPU::getKeyPoints(GpuMat& keypoints)
Parameters:
  • keypoints – The output vector of keypoints.

The function performs non-max suppression if needed and returns final count of keypoints.

gpu::ORB_GPU

class gpu::ORB_GPU

Class for extracting ORB features and descriptors from an image.

class ORB_GPU
{
public:
    enum
    {
        X_ROW = 0,
        Y_ROW,
        RESPONSE_ROW,
        ANGLE_ROW,
        OCTAVE_ROW,
        SIZE_ROW,
        ROWS_COUNT
    };

    enum
    {
        DEFAULT_FAST_THRESHOLD = 20
    };

    explicit ORB_GPU(int nFeatures = 500, float scaleFactor = 1.2f,
                     int nLevels = 8, int edgeThreshold = 31,
                     int firstLevel = 0, int WTA_K = 2,
                     int scoreType = 0, int patchSize = 31);

    void operator()(const GpuMat& image, const GpuMat& mask,
                    std::vector<KeyPoint>& keypoints);
    void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints);

    void operator()(const GpuMat& image, const GpuMat& mask,
                    std::vector<KeyPoint>& keypoints, GpuMat& descriptors);
    void operator()(const GpuMat& image, const GpuMat& mask,
                    GpuMat& keypoints, GpuMat& descriptors);

    void downloadKeyPoints(GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints);

    void convertKeyPoints(Mat& d_keypoints, std::vector<KeyPoint>& keypoints);

    int descriptorSize() const;

    void setParams(size_t n_features, const ORB::CommonParams& detector_params);
    void setFastParams(int threshold, bool nonmaxSupression = true);

    void release();

    bool blurForDescriptor;
};

The class implements ORB feature detection and description algorithm.

gpu::ORB_GPU::ORB_GPU

Constructor.

C++: gpu::ORB_GPU::ORB_GPU(int nFeatures=500, float scaleFactor=1.2f, int nLevels=8, int edgeThreshold=31, int firstLevel=0, int WTA_K=2, int scoreType=0, int patchSize=31)
Parameters:
  • nFeatures – The number of desired features.
  • scaleFactor – Coefficient by which we divide the dimensions from one scale pyramid level to the next.
  • nLevels – The number of levels in the scale pyramid.
  • edgeThreshold – How far from the boundary the points should be.
  • firstLevel – The level at which the image is given. If 1, that means we will also look at the image scaleFactor times bigger.

gpu::ORB_GPU::operator()

Detects keypoints and computes descriptors for them.

C++: void gpu::ORB_GPU::operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints)
C++: void gpu::ORB_GPU::operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints)
C++: void gpu::ORB_GPU::operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints, GpuMat& descriptors)
C++: void gpu::ORB_GPU::operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors)
Parameters:
  • image – Input 8-bit grayscale image.
  • mask – Optional input mask that marks the regions where we should detect features.
  • keypoints

    The input/output vector of keypoints. Can be stored both in CPU and GPU memory. For GPU memory:

    • keypoints.ptr<float>(X_ROW)[i] contains x coordinate of the i’th feature.
    • keypoints.ptr<float>(Y_ROW)[i] contains y coordinate of the i’th feature.
    • keypoints.ptr<float>(RESPONSE_ROW)[i] contains the response of the i’th feature.
    • keypoints.ptr<float>(ANGLE_ROW)[i] contains orientation of the i’th feature.
    • keypoints.ptr<float>(OCTAVE_ROW)[i] contains the octave of the i’th feature.
    • keypoints.ptr<float>(SIZE_ROW)[i] contains the size of the i’th feature.
  • descriptors – Computed descriptors. if blurForDescriptor is true, image will be blurred before descriptors calculation.

gpu::ORB_GPU::downloadKeyPoints

Download keypoints from GPU to CPU memory.

C++: void gpu::ORB_GPU::downloadKeyPoints(GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints)

gpu::ORB_GPU::convertKeyPoints

Converts keypoints from GPU representation to vector of KeyPoint.

C++: void gpu::ORB_GPU::convertKeyPoints(Mat& d_keypoints, std::vector<KeyPoint>& keypoints)

gpu::ORB_GPU::release

Releases inner buffer memory.

C++: void gpu::ORB_GPU::release()

gpu::BruteForceMatcher_GPU

class template<class Distance> gpu::BruteForceMatcher_GPU

Brute-force descriptor matcher. For each descriptor in the first set, this matcher finds the closest descriptor in the second set by trying each one. This descriptor matcher supports masking permissible matches between descriptor sets.

template<class Distance>
class BruteForceMatcher_GPU
{
public:
    // Add descriptors to train descriptor collection.
    void add(const std::vector<GpuMat>& descCollection);

    // Get train descriptors collection.
    const std::vector<GpuMat>& getTrainDescriptors() const;

    // Clear train descriptors collection.
    void clear();

    // Return true if there are no train descriptors in collection.
    bool empty() const;

    // Return true if the matcher supports mask in match methods.
    bool isMaskSupported() const;

    void matchSingle(const GpuMat& query, const GpuMat& train,
        GpuMat& trainIdx, GpuMat& distance,
        const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());

    static void matchDownload(const GpuMat& trainIdx,
        const GpuMat& distance, std::vector<DMatch>& matches);
    static void matchConvert(const Mat& trainIdx,
        const Mat& distance, std::vector<DMatch>& matches);

    void match(const GpuMat& query, const GpuMat& train,
        std::vector<DMatch>& matches, const GpuMat& mask = GpuMat());

    void makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection,
        const vector<GpuMat>& masks = std::vector<GpuMat>());

    void matchCollection(const GpuMat& query, const GpuMat& trainCollection,
        GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
        const GpuMat& maskCollection, Stream& stream = Stream::Null());

    static void matchDownload(const GpuMat& trainIdx, GpuMat& imgIdx,
        const GpuMat& distance, std::vector<DMatch>& matches);
    static void matchConvert(const Mat& trainIdx, const Mat& imgIdx,
        const Mat& distance, std::vector<DMatch>& matches);

    void match(const GpuMat& query, std::vector<DMatch>& matches,
        const std::vector<GpuMat>& masks = std::vector<GpuMat>());

    void knnMatchSingle(const GpuMat& query, const GpuMat& train,
        GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k,
        const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());

    static void knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance,
        std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
    static void knnMatchConvert(const Mat& trainIdx, const Mat& distance,
        std::vector< std::vector<DMatch> >& matches, bool compactResult = false);

    void knnMatch(const GpuMat& query, const GpuMat& train,
        std::vector< std::vector<DMatch> >& matches, int k,
        const GpuMat& mask = GpuMat(), bool compactResult = false);

    void knnMatch2Collection(const GpuMat& query, const GpuMat& trainCollection,
        GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
        const GpuMat& maskCollection = GpuMat(), Stream& stream = Stream::Null());

    static void knnMatch2Download(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance,
        std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
    static void knnMatch2Convert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance,
        std::vector< std::vector<DMatch> >& matches, bool compactResult = false);

    void knnMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, int k,
        const std::vector<GpuMat>& masks = std::vector<GpuMat>(),
        bool compactResult = false);

    void radiusMatchSingle(const GpuMat& query, const GpuMat& train,
        GpuMat& trainIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance,
        const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());

    static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, const GpuMat& nMatches,
        std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
    static void radiusMatchConvert(const Mat& trainIdx, const Mat& distance, const Mat& nMatches,
        std::vector< std::vector<DMatch> >& matches, bool compactResult = false);

    void radiusMatch(const GpuMat& query, const GpuMat& train,
        std::vector< std::vector<DMatch> >& matches, float maxDistance,
        const GpuMat& mask = GpuMat(), bool compactResult = false);

    void radiusMatchCollection(const GpuMat& query, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance,
        const std::vector<GpuMat>& masks = std::vector<GpuMat>(), Stream& stream = Stream::Null());

    static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, const GpuMat& nMatches,
        std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
    static void radiusMatchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, const Mat& nMatches,
        std::vector< std::vector<DMatch> >& matches, bool compactResult = false);

    void radiusMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, float maxDistance,
        const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false);

private:
    std::vector<GpuMat> trainDescCollection;
};

The class BruteForceMatcher_GPU has an interface similar to the class DescriptorMatcher. It has two groups of match methods: for matching descriptors of one image with another image or with an image set. Also, all functions have an alternative to save results either to the GPU memory or to the CPU memory. The Distance template parameter is kept for CPU/GPU interfaces similarity. BruteForceMatcher_GPU supports only the L1<float>, L2<float>, and Hamming distance types.

See also

DescriptorMatcher, BruteForceMatcher

gpu::BruteForceMatcher_GPU::match

Finds the best match for each descriptor from a query set with train descriptors.

C++: void gpu::BruteForceMatcher_GPU::match(const GpuMat& query, const GpuMat& train, std::vector<DMatch>& matches, const GpuMat& mask=GpuMat())
C++: void gpu::BruteForceMatcher_GPU::matchSingle(const GpuMat& query, const GpuMat& train, GpuMat& trainIdx, GpuMat& distance, const GpuMat& mask=GpuMat(), Stream& stream=Stream::Null())
C++: void gpu::BruteForceMatcher_GPU::match(const GpuMat& query, std::vector<DMatch>& matches, const std::vector<GpuMat>& masks=std::vector<GpuMat>())
C++: void gpu::BruteForceMatcher_GPU::matchCollection(const GpuMat& query, const GpuMat& trainCollection, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, const GpuMat& masks, Stream& stream=Stream::Null())

gpu::BruteForceMatcher_GPU::makeGpuCollection

Performs a GPU collection of train descriptors and masks in a suitable format for the gpu::BruteForceMatcher_GPU::matchCollection() function.

C++: void gpu::BruteForceMatcher_GPU::makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection, const vector<GpuMat>& masks=std::vector<GpuMat>())

gpu::BruteForceMatcher_GPU::matchDownload

Downloads matrices obtained via gpu::BruteForceMatcher_GPU::matchSingle() or gpu::BruteForceMatcher_GPU::matchCollection() to vector with DMatch.

C++: void gpu::BruteForceMatcher_GPU::matchDownload(const GpuMat& trainIdx, const GpuMat& distance, std::vector<DMatch>& matches)
C++: void gpu::BruteForceMatcher_GPU::matchDownload(const GpuMat& trainIdx, GpuMat& imgIdx, const GpuMat& distance, std::vector<DMatch>& matches)

gpu::BruteForceMatcher_GPU::matchConvert

Converts matrices obtained via gpu::BruteForceMatcher_GPU::matchSingle() or gpu::BruteForceMatcher_GPU::matchCollection() to vector with DMatch.

C++: void gpu::BruteForceMatcher_GPU::matchConvert(const Mat& trainIdx, const Mat& distance, std::vector<DMatch>& matches)
C++: void gpu::BruteForceMatcher_GPU::matchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, std::vector<DMatch>& matches)

gpu::BruteForceMatcher_GPU::knnMatch

Finds the k best matches for each descriptor from a query set with train descriptors.

C++: void gpu::BruteForceMatcher_GPU::knnMatch(const GpuMat& query, const GpuMat& train, std::vector<std::vector<DMatch>>& matches, int k, const GpuMat& mask=GpuMat(), bool compactResult=false)
C++: void gpu::BruteForceMatcher_GPU::knnMatchSingle(const GpuMat& query, const GpuMat& train, GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k, const GpuMat& mask=GpuMat(), Stream& stream=Stream::Null())
C++: void gpu::BruteForceMatcher_GPU::knnMatch(const GpuMat& query, std::vector<std::vector<DMatch>>& matches, int k, const std::vector<GpuMat>& masks=std::vector<GpuMat>(), bool compactResult=false )
C++: void gpu::BruteForceMatcher_GPU::knnMatch2Collection(const GpuMat& query, const GpuMat& trainCollection, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, const GpuMat& maskCollection=GpuMat(), Stream& stream=Stream::Null())
Parameters:
  • query – Query set of descriptors.
  • train – Training set of descriptors. It is not be added to train descriptors collection stored in the class object.
  • k – Number of the best matches per each query descriptor (or less if it is not possible).
  • mask – Mask specifying permissible matches between the input query and train matrices of descriptors.
  • compactResult – If compactResult is true , the matches vector does not contain matches for fully masked-out query descriptors.
  • stream – Stream for the asynchronous version.

The function returns detected k (or less if not possible) matches in the increasing order by distance.

The third variant of the method stores the results in GPU memory.

gpu::BruteForceMatcher_GPU::knnMatchDownload

Downloads matrices obtained via gpu::BruteForceMatcher_GPU::knnMatchSingle() or gpu::BruteForceMatcher_GPU::knnMatch2Collection() to vector with DMatch.

C++: void gpu::BruteForceMatcher_GPU::knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, std::vector<std::vector<DMatch>>& matches, bool compactResult=false)
C++: void gpu::BruteForceMatcher_GPU::knnMatch2Download(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, std::vector<std::vector<DMatch>>& matches, bool compactResult=false)

If compactResult is true , the matches vector does not contain matches for fully masked-out query descriptors.

gpu::BruteForceMatcher_GPU::knnMatchConvert

Converts matrices obtained via gpu::BruteForceMatcher_GPU::knnMatchSingle() or gpu::BruteForceMatcher_GPU::knnMatch2Collection() to CPU vector with DMatch.

C++: void gpu::BruteForceMatcher_GPU::knnMatchConvert(const Mat& trainIdx, const Mat& distance, std::vector<std::vector<DMatch>>& matches, bool compactResult=false)
C++: void gpu::BruteForceMatcher_GPU::knnMatch2Convert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, std::vector<std::vector<DMatch>>& matches, bool compactResult=false)

If compactResult is true , the matches vector does not contain matches for fully masked-out query descriptors.

gpu::BruteForceMatcher_GPU::radiusMatch

For each query descriptor, finds the best matches with a distance less than a given threshold.

C++: void gpu::BruteForceMatcher_GPU::radiusMatch(const GpuMat& query, const GpuMat& train, std::vector<std::vector<DMatch>>& matches, float maxDistance, const GpuMat& mask=GpuMat(), bool compactResult=false)
C++: void gpu::BruteForceMatcher_GPU::radiusMatchSingle(const GpuMat& query, const GpuMat& train, GpuMat& trainIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance, const GpuMat& mask=GpuMat(), Stream& stream=Stream::Null())
C++: void gpu::BruteForceMatcher_GPU::radiusMatch(const GpuMat& query, std::vector<std::vector<DMatch>>& matches, float maxDistance, const std::vector<GpuMat>& masks=std::vector<GpuMat>(), bool compactResult=false)
C++: void gpu::BruteForceMatcher_GPU::radiusMatchCollection(const GpuMat& query, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance, const std::vector<GpuMat>& masks=std::vector<GpuMat>(), Stream& stream=Stream::Null())
Parameters:
  • query – Query set of descriptors.
  • train – Training set of descriptors. It is not added to train descriptors collection stored in the class object.
  • maxDistance – Distance threshold.
  • mask – Mask specifying permissible matches between the input query and train matrices of descriptors.
  • compactResult – If compactResult is true , the matches vector does not contain matches for fully masked-out query descriptors.
  • stream – Stream for the asynchronous version.

The function returns detected matches in the increasing order by distance.

The methods work only on devices with the compute capability >= 1.1.

The third variant of the method stores the results in GPU memory and does not store the points by the distance.

gpu::BruteForceMatcher_GPU::radiusMatchDownload

Downloads matrices obtained via gpu::BruteForceMatcher_GPU::radiusMatchSingle() or gpu::BruteForceMatcher_GPU::radiusMatchCollection() to vector with DMatch.

C++: void gpu::BruteForceMatcher_GPU::radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, const GpuMat& nMatches, std::vector<std::vector<DMatch>>& matches, bool compactResult=false)
C++: void gpu::BruteForceMatcher_GPU::radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, const GpuMat& nMatches, std::vector<std::vector<DMatch>>& matches, bool compactResult=false)

If compactResult is true , the matches vector does not contain matches for fully masked-out query descriptors.

gpu::BruteForceMatcher_GPU::radiusMatchConvert

Converts matrices obtained via gpu::BruteForceMatcher_GPU::radiusMatchSingle() or gpu::BruteForceMatcher_GPU::radiusMatchCollection() to vector with DMatch.

C++: void gpu::BruteForceMatcher_GPU::radiusMatchConvert(const Mat& trainIdx, const Mat& distance, const Mat& nMatches, std::vector<std::vector<DMatch>>& matches, bool compactResult=false)
C++: void gpu::BruteForceMatcher_GPU::radiusMatchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, const Mat& nMatches, std::vector<std::vector<DMatch>>& matches, bool compactResult=false)

If compactResult is true , the matches vector does not contain matches for fully masked-out query descriptors.