Motion Analysis and Object Tracking

accumulate

Adds an image to the accumulator.

C++: void accumulate(InputArray src, InputOutputArray dst, InputArray mask=noArray() )
Python: cv2.accumulate(src, dst[, mask]) → None
C: void cvAcc(const CvArr* src, CvArr* dst, const CvArr* mask=NULL )
Python: cv.Acc(src, dst, mask=None) → None
Parameters:
  • src – Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
  • dst – Accumulator image with the same number of channels as input image, 32-bit or 64-bit floating-point.
  • mask – Optional operation mask.

The function adds src or some of its elements to dst :

\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0

The function supports multi-channel images. Each channel is processed independently.

The functions accumulate* can be used, for example, to collect statistics of a scene background viewed by a still camera and for the further foreground-background segmentation.

accumulateSquare

Adds the square of a source image to the accumulator.

C++: void accumulateSquare(InputArray src, InputOutputArray dst, InputArray mask=noArray() )
Python: cv2.accumulateSquare(src, dst[, mask]) → None
C: void cvSquareAcc(const CvArr* src, CvArr* dst, const CvArr* mask=NULL )
Python: cv.SquareAcc(src, dst, mask=None) → None
Parameters:
  • src – Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
  • dst – Accumulator image with the same number of channels as input image, 32-bit or 64-bit floating-point.
  • mask – Optional operation mask.

The function adds the input image src or its selected region, raised to a power of 2, to the accumulator dst :

\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src} (x,y)^2  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0

The function supports multi-channel images. Each channel is processed independently.

accumulateProduct

Adds the per-element product of two input images to the accumulator.

C++: void accumulateProduct(InputArray src1, InputArray src2, InputOutputArray dst, InputArray mask=noArray() )
Python: cv2.accumulateProduct(src1, src2, dst[, mask]) → None
C: void cvMultiplyAcc(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL )
Python: cv.MultiplyAcc(src1, src2, dst, mask=None) → None
Parameters:
  • src1 – First input image, 1- or 3-channel, 8-bit or 32-bit floating point.
  • src2 – Second input image of the same type and the same size as src1 .
  • dst – Accumulator with the same number of channels as input images, 32-bit or 64-bit floating-point.
  • mask – Optional operation mask.

The function adds the product of two images or their selected regions to the accumulator dst :

\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src1} (x,y)  \cdot \texttt{src2} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0

The function supports multi-channel images. Each channel is processed independently.

accumulateWeighted

Updates a running average.

C++: void accumulateWeighted(InputArray src, InputOutputArray dst, double alpha, InputArray mask=noArray() )
Python: cv2.accumulateWeighted(src, dst, alpha[, mask]) → None
C: void cvRunningAvg(const CvArr* src, CvArr* dst, double alpha, const CvArr* mask=NULL )
Python: cv.RunningAvg(src, dst, alpha, mask=None) → None
Parameters:
  • src – Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
  • dst – Accumulator image with the same number of channels as input image, 32-bit or 64-bit floating-point.
  • alpha – Weight of the input image.
  • mask – Optional operation mask.

The function calculates the weighted sum of the input image src and the accumulator dst so that dst becomes a running average of a frame sequence:

\texttt{dst} (x,y)  \leftarrow (1- \texttt{alpha} )  \cdot \texttt{dst} (x,y) +  \texttt{alpha} \cdot \texttt{src} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0

That is, alpha regulates the update speed (how fast the accumulator “forgets” about earlier images). The function supports multi-channel images. Each channel is processed independently.

phaseCorrelate

The function is used to detect translational shifts that occur between two images. The operation takes advantage of the Fourier shift theorem for detecting the translational shift in the frequency domain. It can be used for fast image registration as well as motion esitimation. For more information please see http://en.wikipedia.org/wiki/Phase_correlation .

Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed with getOptimalDFTSize().

C++: Point2d phaseCorrelate(InputArray src1, InputArray src2, InputArray window=noArray())
Parameters:
  • src1 – Source floating point array (CV_32FC1 or CV_64FC1)
  • src2 – Source floating point array (CV_32FC1 or CV_64FC1)
  • window – Floating point array with windowing coefficients to reduce edge effects (optional).

Return value: detected phase shift (sub-pixel) between the two arrays.

The function performs the following equations

  • First it applies a Hanning window (see http://en.wikipedia.org/wiki/Hann_function) to each image to remove possible edge effects. This window is cached until the array size changes to speed up processing time.

  • Next it computes the forward DFTs of each source array: .. math:

    \mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}

    where \mathcal{F} is the forward DFT.

  • It then computes the cross-power spectrum of each frequency domain array: .. math:

    R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}
  • Next the cross-correlation is converted back into the time domain via the inverse DFT: .. math:

    r = \mathcal{F}^{-1}\{R\}
  • Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to achieve sub-pixel accuracy. .. math:

    (\Delta x, \Delta y) = \texttt{weighted_centroid}\{\arg \max_{(x, y)}\{r\}\}

createHanningWindow

This function computes a Hanning window coefficients in two dimensions. See http://en.wikipedia.org/wiki/Hann_function and http://en.wikipedia.org/wiki/Window_function for more information.

C++: void createHanningWindow(OutputArray dst, Size winSize, int type)
Parameters:
  • dst – Destination array to place Hann coefficients in
  • winSize – The window size specifications
  • type – Created array type

An example is shown below:

// create hanning window of size 100x100 and type CV_32F
Mat hann;
createHanningWindow(hann, Size(100, 100), CV_32F);

See also

phaseCorrelate()

Table Of Contents

Previous topic

Planar Subdivisions (C API)

Next topic

Feature Detection

This Page